• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    EPIGENETIC REMODELING DURING ARSENICAL-INDUCED MALIGNANT TRANSFORMATION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10188_sip1_m.pdf
    Size:
    2.402Mb
    Format:
    PDF
    Description:
    azu_etd_10188_sip1_m.pdf
    Download
    Author
    Jensen, Taylor Jacob
    Issue Date
    2008
    Keywords
    Arsenic
    Carcinogenesis
    DNA Methylation
    Epigenetic
    Histone Acetylation
    MMA(III)
    Advisor
    Futscher, Bernard W
    Committee Chair
    Futscher, Bernard W
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Humans are exposed to arsenicals through many routes with the most common being drinking water. Exposure to arsenic has been associated with an increased incidence of skin, lung, liver, prostate, and bladder cancer. Although the relationship between arsenic exposure and carcinogenesis is well documented, the mechanisms by which arsenic participates in tumorigenesis are not fully elucidated. We evaluated the potential epigenetic component of arsenical action by assessing the histone acetylation and DNA methylation state of 13,000 human gene promoters in a cell line model of arsenical-mediated malignant transformation. We show changes in histone H3 acetylation and DNA methylation occur during arsenical-induced malignant transformation, each of which is linked to the expression state of the associated gene. These epigenetic changes occurred non-randomly and targeted common promoters whether the selection was performed with arsenite [As(III)] or with the As(III) metabolite monomethylarsonous acid [MMA(III)]. The epigenetic alterations of these promoters and associated malignant phenotypes were stable after the removal of the transforming arsenical. One of the affected regions was the promoter of WNT5A. This gene is transcriptionally activated during arsenical induced malignant transformation and its promoter region exhibited alterations in each of the four histone modifications examined which were linked to its transcriptional activation. Experimental reduction of WNT5A transcript levels resulted in abrogated anchorage independent growth, suggesting a participative role for the epigenetic remodeling of this promoter region in arsenical-induced malignant transformation. Taken together, these data suggest that arsenicals may participate in tumorigenesis by stably altering the DNA methylation and histone modifications associated with targeted genes, uncovering a likely set of participative genes and representing a mechanism to potentially explain the latency associated with arsenic-induced malignancy.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Pharmacology & Toxicology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.