• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development of a Sol-Gel-Based Thin-Layer Chromatography Stationary Phase for in-situ Infrared Analysis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2547_sip1_m.pdf
    Size:
    60.85Mb
    Format:
    PDF
    Description:
    azu_etd_2547_sip1_m.pdf
    Download
    Author
    Jones, Linda
    Issue Date
    2008
    Keywords
    thin layer chromatography
    infrared detection
    sol-gel chemistry
    Committee Chair
    Denton, M. Bonner
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A sol-gel stationary phase was developed for in-situ infrared (IR) detection of analytes on thin-layer chromatography (TLC) plates. These sol-gel-based TLC plates have improved optical properties compared with conventional TLC plates in IR spectroscopic analysis. Samples can be analyzed in transmission geometry, requiring no special attachments. The sol-gel-based TLC plates demonstrate significantly better light throughput and a wider spectral range than conventional TLC plates analyzed in diffuse reflectance geometries.The sol-gel precursor, methyltrimethoxyorthosilicate (MTES), was templated with cetyltrimethylammonium bromide (CTAB) and urea in order to form a porous sol-gel. Aerosol deposition was used to apply the sol-gel solution onto either glass slides or silicon wafers within an enclosed chamber. Many variables were studied to determine their effect on the quality of the sol-gel stationary phases, including the ratio of MTES:methanol:water:CTAB:urea:HCl:, gelation times and temperatures, and deposition rate. Sol-gel films prepared using MTES/methanol/water/CTAB at ratios of 1 : 20 : 7 : 0.2 containing 5 wt% urea (relative to MTES) and pH 1.5 were crack-free, mechanically stable, and uniform in appearance. The films were tens of microns thick with a highly interconnected porous structure.For chromatographic separations, the films exhibited good solvent migration velocity and could be repeatedly washed and reused for TLC separations without showing degradation in the separation. Several different classes of compounds, including polyaromatic hydrocarbons and dyes, were successfully separated. Theoretical plate values measured on the MTES-based sol-gel films were comparable to those obtained on commercially available TLC plates.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.