Development of Reactive Ion Scattering Spectrometry (RISS) as an Analytical Surface Characterization Technique
Name:
azu_etd_10000_sip1_m.pdf
Size:
4.283Mb
Format:
PDF
Description:
azu_etd_10000_sip1_m.pdf
Author
Joyce, Karen ElaineIssue Date
2008Keywords
Molecular WiresReactive Ion Scattering Spectrometry (RISS)
Self-assembled monolayers
Surface Characterization
Advisor
Wysocki, Vicki H.Committee Chair
Wysocki, Vicki H.
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Reactive ion scattering spectrometry (RISS) utilizing low energy (tens of eV) polyatomic ions was employed to characterize self-assembled monolayers (SAMs) on gold. The terminal composition of halogenated SAMs, chemisorption motifs of disulfide and diselenide SAMs, and electron transfer properties of molecular wire containing SAMs were interrogated to develop the versatility of RISS as an analytical surface characterization technique.Novel halogen terminated SAMs were examined for their ability to convert translational to vibrational energy of colliding projectile ions. A general increasing energy deposition trend correlated with increasing terminal mass with the exception of the iodine functionality. Increased amounts of surface abstractions and sputtering from C12I suggest competitive ion-surface interactions account for less than predicted energy deposition results. Mixed films of CH2Br and CH3 terminal groups elucidated interfacial surface crowding discerned by energy deposition results.Thiol and disulfide based SAMs were shown by RISS comparisons to be dissimilar in structure. Terminal orientation, however, was the same based on ion-surface reactions, disproving the proposed dimer model of disulfide SAMs. Ion-surface reactions and electron transfer properties of disulfide surfaces suggested greater percentages of c(4x2) superlattice structure than in thiol SAMs. Based on increased hydrogen reactivity, decreased methyl reactivity, and increased energy deposition results, diselenide based SAMs were more disordered than S-Au based SAMs. Electron transfer results monitored through total ion currents (TIC) showed Se-Au contacts are more conductive than S-Au attachments.Molecular wire candidates whose electron transfer capabilities are difficult to characterize by traditional techniques were characterized by RISS after being doped into matrix SAMs. Electron transfer properties were dependent on the isolating SAM matrix, dipole moments of the wires, and the potential applied to the surface. Changes in surface voltage dictated molecular wire geometry and electron transfer. Wires were annealed into preferential geometries by colliding ions, but did not operate as switches.While not related to the advancement of RISS, structural elucidation of the pharmaceutical carvidioliol was investigated by collision-induced dissociation, surface-induced dissociation, sustained off-resonance irradiation, and sustained off-resonance irradiation-resonant excitation and through gas-phase hydrogen/deuterium exchange. This molecule fragmented easily by all methods and demonstrated the chemical specificity of gas-phase hydrogen/deuterium exchange experiments.Type
textElectronic Dissertation
Degree Name
Ph.D.Degree Level
doctoralDegree Program
ChemistryGraduate College