• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Reductive Dehalogenation of Gas-phase Trichloroethylene using Heterogeneous Catalytic and Electrochemical Methods

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1366_sip1_m.pdf
    Size:
    764.0Kb
    Format:
    PDF
    Description:
    azu_etd_1366_sip1_m.pdf
    Download
    Author
    Ju, Xiumin
    Issue Date
    2005
    Keywords
    trichloroethylene
    reductive dehalogenation
    catalytic reduction
    electrochemical reduction
    Advisor
    Arnold, Robert G.
    Committee Chair
    Arnold, Robert G.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    REDUCTIVE DEHALOGENATION OF GAS-PHASE TRICHLOROETHYLENE USING HETEROGENEOUS CATALYTIC AND ELECTROCHEMICAL METHODSXiumin Ju, Ph.D.The University of Arizona, 2005Director: Dr. Robert G. ArnoldThe first part of this work investigates catalytic hydrodechlorination (HDC) of gas-phase trichloroethylene (TCE) using 0.5 wt.% Pt/g-Al2O3 and 0.0025 wt.% Pt/SiO2 in packed-bed reactors. TCE was efficiently transformed on the platinum surface using H2 as reducing agent. The main products of the reaction were ethane and chloroethane. In the case of Pt/Al2O3, more than 94% TCE conversion efficiency was maintained for over 700 hours of operation at 100ºC at a residence time of 0.37 seconds. At 22ºC, severe catalyst deactivation was observed. Catalyst deactivation was attributed to coking and chlorine poisoning. A series of treatments including (i) hydrogen gas addition at high temperature (oxygen free) to remove chlorine and (ii) oxygen addition at 500ºC to remove coke were attempted to regenerate the deactivated catalyst. Only hydrogen treatment partially restored catalyst activity. When using Pt/SiO2, catalyst deactivation was severe even at 100ºC, probably due to low surface area of Pt and the silica support. Adding KOH to the packed Pt/SiO2 catalyst during (otherwise) normal operation slowed catalyst deactivation. Adding O2 to the influent improved catalyst activity and slowed deactivation.The second part of this research involves the destruction of gas-phase TCE using an electrochemical reactor similar in design of a polymer electrolyte membrane (PEM) fuel cell. With a proton-conducting membrane in the middle, the anode and cathode comprised of carbon cloth and carbon-black-supported Pt were hotpressed together to form a membrane electrode assembly (MEA). TCE contaminated gas streams were fed to the cathode side of the fuel cell, where TCE was reduced to ethane and hydrochloric acid. The results suggest that TCE reduction occurs via a catalytic reaction with atomic hydrogen that is reformed on the cathode's surface rather than an electrochemical reduction via direct electron transfer. Substantial conversion of TCE was obtained, even in the presence of molecular oxygen in the cathode chamber. The process was modeled successfully by conceptualizing the cathode chamber as a plug flow reactor with a continuous source of H2(g) emanating from the boundary.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Environmental Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.