• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Removal of Adsorbed Moisture and Organics from Surfaces and Nanostructures in Semiconductor Manufacturing

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10110_sip1_m.pdf
    Size:
    4.019Mb
    Format:
    PDF
    Description:
    azu_etd_10110_sip1_m.pdf
    Download
    Author
    Juneja, Harpreet
    Issue Date
    2008
    Keywords
    Chemical Engineering
    Advisor
    Shadman, Farhang
    Committee Chair
    Shadman, Farhang
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    As the semiconductor industry is moving towards achieving smaller, denser and faster integrated circuits; the issue of contamination control is becoming increasingly important. The current work focuses on the mechanism and kinetics of removal of adsorbed moisture and organics from surfaces and nanostructures.In the first application of this study, a novel approach to the characterization of dynamic interactions of gases with solid surfaces is developed. A model is developed to represent the simultaneous adsorption and desorption processes in these systems. The model can simulate both the non-equilibrium adsorption and desorption processes as well as the equilibrium state (isotherms and isobars). The model is validated using experimental data, and applied to the adsorption of moisture on oxides (ZrO2 and HfO2). Practical application of this work is shown by optimizing the purge recipes for removal of moisture from a ZrO2 film.In the second application, a novel approach is developed and demonstrated to characterize the sampling line effects during dynamic monitoring of fluid concentrations. The "Sampling line" in this study refers to all components between the point of fluid sampling and the point of analyzer sensor. In general, sampling lines introduce errors in measurements by altering the sample properties due to the fluid transport in the line as well as the adsorption and desorption of fluid constituents on the surfaces of the sampling components that come in contact with the sample fluid. A methodology based on a sampling line simulator is developed for taking these effects into account and correcting the measurements. The sampling line simulator can be used to analyze the effect of various sampling configurations and operating conditions.In the last application, experiments were carried out to study the interaction of organics with micro/nano particles representing nanostructures. A process model is developed which gives insight about the mechanism and kinetics of these interactions. The micro/nano particles, due to their large surface area, can adsorb any other species which may result in the change in their properties. This may ultimately affect the process in which they exist. This study will also be helpful in analyzing the Environment, Safety and Health (ESH) effects of nanostructures.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.