• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Rotational Spectroscopy and Structures of Organometallic Compounds

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2063_sip1_m.pdf
    Size:
    1.535Mb
    Format:
    PDF
    Description:
    azu_etd_2063_sip1_m.pdf
    Download
    Author
    Karunatilaka, Chandana
    Issue Date
    2007
    Keywords
    Microwave Spectroscopy
    Rotational Spectra
    Organometallic Compounds
    Transition Metal Complexes
    Advisor
    Kukolich, Stephen G.
    Committee Chair
    Kukolich, Stephen G.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    High-resolution pulsed beam Fourier Transform Microwave Spectroscopy (PBFTMS) technique has been used to investigate the rotational spectra, molecular structures and electronic charge distribution of organometallic and organic molecules. The thesis reports high-resolution rotational spectral findings for nine different asymmetric-top molecules in the singlet electronic ground state including: Cyclopentadienyltungstentricarbonylhydride, Bis-(cyclopentadienyl)tungstendihydride, Tetracarbonylethyleneosmium, two substituted Ferrocenes and an organic keto-enol tautomeric system, Z-2-Hydroxypyridine and 2-Pyridone. Moreover, gas-phase rotational constants and distortion constants have also been reported for an excited vibrational state of Cyclopentadienylnickelnitrosyl complex using a high-resolution Fourier Transform Spectrometer (FTS) system at Kitt Peak Arizona, (KPNO). Preliminary microwave results for a fluxional molecule, Cyclopentadienyliridiumdicarbonyl are also presented in this work. Extensive Density Functional Theory (DFT) calculations have been performed in conjunction with the experiments to provide additional insight toward further understanding the equilibrium structures, structural isomers and electric field distributions of these molecules. These calculations were not only helpful in predicting the preliminary structure and rotational constants of the molecules of interest, but also advantageous in analyzing the observed spectra.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.