• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Architectures for Compressive Imaging with Applications in Sensor Networks, Adaptive Object Reconstruction, and Motion Detection

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11022_sip1_m.pdf
    Size:
    4.014Mb
    Format:
    PDF
    Description:
    azu_etd_11022_sip1_m.pdf
    Download
    Author
    Ke, Jun
    Issue Date
    2010
    Advisor
    Neifeld, Mark A.
    Committee Chair
    Neifeld, Mark A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Computational imaging becomes a cutting edge research area by incorporating signal/image processing as an inherent part of an imaging system. Its civil and military applications include surveillance, automobile, and medical health. The newest branch of computational imaging, compressive imaging emerged in several years back. In-stead of making measurement for each individual object pixel, compressive imaging directly making compressed measurements using optical/opto-electronic devices in data acquisition process. These compressed measurements referred to as features are linear combinations of object pixels weighted by transformation bases. Usingvarious types of signal processing techniques, features are processed for the imaging system final tasks such as reconstruction, detection, and recognition. In this dissertation, three compressive imaging implementation architectures, sequential, parallel, and photon-sharing architectures, are analyzed. Two kinds of applications, object reconstruction and motion detections, are studied using projections including PC (Principal Component), Hadamard, DCT (Discrete Cosine Transformation), Gabor, and random projection. Linear and/or nonlinear algorithms are used for static and adaptive measurements. A webcam based multi-sensor network and a DMD based single detector imaging system demonstrate the dissertation work.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Electrical & Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.