• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Seasonal Polar Carbon Dioxide Frost on Mars: Spatiotemporal Quantification of CO2 Utilizing 2001 Mars Odyssey Gamma Ray Spectrometer Data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1476_sip1_m.pdf
    Size:
    2.308Mb
    Format:
    PDF
    Description:
    azu_etd_1476_sip1_m.pdf
    Download
    Author
    Kelly, Eleanor Jane
    Issue Date
    2006
    Keywords
    Mars
    carbon dioxide
    CO2
    polar caps
    Committee Chair
    Boynton, William V
    Rutherfoord, John P
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The exchange of carbon dioxide between the atmosphere and the polar caps on Mars creates a seasonal cycle of growth and retreat of the polar caps. As the major component of the Martian atmosphere, CO2 condenses in the polar regions of the planet during the winter seasons and precipitates as CO2 frost. It then sublimes during the spring and summer seasons in response to solar radiation. Through natural radioactivity or when exposed to cosmic rays, elements in the Martian near-subsurface (uppermost meter) emit gamma rays with distinct, characteristic energies. The Gamma Ray Spectrometer (GRS) onboard the 2001 Mars Odyssey satellite is used to measure the gamma rays coming from the Martian regolith to calculate elemental distributions, abundances, and temporal variations in the gamma ray flux. Changes in the CO2 frost over time can be quantified by observing attenuation effects of H (2223 keV hydrogen) and 40K (1461 keV potassium) gamma ray signals transmitted through various depths of polar CO2 overburden throughout the Martian seasons.Conclusions are drawn about the spatial extent, column density, and mass of Mars' seasonal polar caps as a function of time utilizing GRS data. Columnar thickness and mass results are discussed and plotted for latitudes including +/-60 degrees and poleward. GRS observations are compared to predictions from the NASA Ames Research Center Mars General Circulation Model (ARC GCM) and to similar experimental results from the Mars Odyssey High Energy Neutron Detector (HEND) and the Neutron Spectrometer (NS). Models for north and south polar atmosphere and regolith distributions are incorporated, and the results indicate that the assumption of a 100% H2O-ice residual cap underlying the seasonal frost in the north is accurate. The GRS CO2 frost observations are in good agreement with the other studies mentioned, in particular for the timing of the beginning of frost deposition to the complete sublimation of surface CO2 back into the atmosphere. The total amount of condensed CO2 mass derived from GRS data is on the order of 6.0 x 10^15 kg and verifies previous reports that ~25% of the total Martian exchangeable-CO2 reservoir participates in the ground-atmosphere cycle.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Physics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.