• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Leaching from High Capacity Arsenic-Bearing Solid Residuals under Landfill Conditions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10559_sip1_m.pdf
    Size:
    846.8Kb
    Format:
    PDF
    Description:
    azu_etd_10559_sip1_m.pdf
    Download
    Author
    Keshta, Mohammed A.
    Issue Date
    2009
    Keywords
    Arsenic
    Iron reduction
    landfill
    leachate
    microbial
    Sorbent
    Advisor
    Ela, Wendell
    Saez, Eduardo
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Arsenic is a naturally occurring contaminant in ground water. The link between human exposure to elevated levels of arsenic and the increase in cancerous and non-cancerous diseases is well documented. Consequently, arsenic removal from drinking water has been thoroughly investigated.Lowering the maximum contaminant limit of arsenic (from 50 to 10 ppb) will burden small water utilities, who either lack the financial or technical ability to comply. Adsorption onto solid media has been one of the most attractive options for small water utilities (EPA, 2001), but this process generates huge amounts of arsenic bearing solid residuals (ABSRs) complicating further this matter.Numerous studies have suggested that the Toxicity Characteristics Leaching Procedure (TCLP) does not properly reflect the actual leaching behavior of ASBRs under landfills (Ghosh et al., 2004). This work focuses on testing different arsenic iron- oxide and non- iron- based sorbents, likely to be used for arsenic removal, and assessing the long term behavior of these sorbents under landfill conditions. Our results indicate that microbial processes play a major role in the mobilization of As from granular ferric hydroxide (GFH). Long term operation of GFH sorbent showed that Fe (III) was reduced to Fe(II) and As(V) was reduced to As(III) under anaerobic/reducing conditions. Under semi batch landfill simulation experiments, our results show that non iron based media leached arsenic above the Toxicity Characteristics limit (TC) and it was observed that sorbate (As) might leach at a faster rate than the sorbent itself. It is thought that arsenic mobilization from iron-based sorbent occurs mostly due to iron reduction and its subsequent dissolution. However, measured arsenic leaching rates from the sorbents used in this study are comparable with that of the ferric hydroxide media, which indicates that the mechanism of arsenic mobilization might be independent of the possible dissolution of the sorbent. Despite the fact that non- iron based media may have a higher arsenic adsorption capacity, they leach arsenic at a higher rate than iron based media under our simulated landfill conditions.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.