• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Glycosylating Enkephalins: Design, Glycosylation Using Sugar Acetates in the Preparation of Glycosyl Amino Acids for Glycopeptide Syntheses, Binding at the Opioid Receptors and Analgesic Effects

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2071_sip1_m.pdf
    Size:
    8.358Mb
    Format:
    PDF
    Description:
    azu_etd_2071_sip1_m.pdf
    Download
    Author
    Keyari, Charles Mambo
    Issue Date
    2007
    Keywords
    Schiff base
    glycopeptides
    glycosylation
    sugar peracetates
    Lewis acid
    opioid receptors
    Committee Chair
    Polt, Robin L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Improved procedures for the glycosylation of serine and threonine utilizing Schiff base activation are reported. The procedures are less expensive and more efficient alternatives to previously published methods. The Schiff bases exhibited ring-chain tautomerism in CDCl₃ as shown by ¹H NMR. Acting as glycosyl acceptors, the Schiff bases reacted at RT with simple sugar peracetate donors with BF₃•OEt₂ promotion to provide the corresponding protected amino acid glycosides in good yields. With microwave irradiation, the reactions were complete in 2-5 minutes. Glycosylation with the dipeptide Schiff base shows the potential of this method in the preparation of peptide building blocks. To investigate this reaction further, direct glycosylation of sugar acetates with FMOC-Ser-OH/OBZl under BF₃•OEt₂ promotion in a microwave provided glycosides in high yield. In addition to the expected glycoside products acetylated side products resulting from acetate migration were isolated, suggesting that activation of the anomeric sugar acetates with a Lewis acid such BF₃•OEt₂ led to an oxocarbenium ion, which rearranged to a 1,2-dioxocarbenium ion because of the acetate participating group at C-2. Solvent participation was also illustrated with acetate migration being more pronounced when CH₃CN was used as a solvent and resulted in less product yield and higher amounts of the acetylated product. The acyl transfer products in these reactions where sugar acetates serve as glycosyl donors is reported for the first time, which also implies that ortho-ester like intermediates are important in the reaction mechanism. Keeping the message segment constant in the sequence H-Tyr-DThr-Gly-Phe-Leu- Ser-CO-NH₂ and modification of the address segment with different carbohydrate moieties had little effect on selectivity for binding at the μ, δ, or κ-opiod receptors. However, substitution of D-threonine with D-serine or the less polar D-alanine in the message segment resulted in a loss of κ-receptor affinity. Further replacement of D-threonine with the more hydrophobic D-valine resulted in complete loss of κ-binding affinity generating pure μ-δ agonists. These data suggests that changes in the message segment of the pharmacophore results in the glycopeptide adopting a conformation that is less favorable for 􀀁-binding receptor activity. Finally, the peripheral administration and i.c.v. tests of the drugs suggest that modifications in the message segment of the pharmacophore influences the potency of these compounds.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.