• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Bayesian Econometrics for Auction Models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11131_sip1_m.pdf
    Size:
    904.5Kb
    Format:
    PDF
    Description:
    azu_etd_11131_sip1_m.pdf
    Download
    Author
    KIM, DONG-HYUK
    Issue Date
    2010
    Keywords
    Affiliated Private Values
    Auction Design
    Bayesian Analysis
    Flexible Density Estimation
    Optimal Reserve Price
    Shape Restriction
    Advisor
    Hirano, Keisuke
    Committee Chair
    Hirano, Keisuke
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation develops Bayesian methods to analyze data from auctions and produce policy recommendations for auction design. The essay, "Auction Design Using Bayesian Methods," proposes a decision theoretic method to choose a reserve price in an auction using data from past auctions. Our method formally incorporates parameter uncertainty and the payoff structure into the decision procedure. When the sample size is modest, it produces higher expected revenue than the plug-in methods. Monte Carlo evidence for this is provided. The second essay, "Flexible Bayesian Analysis of First Price Auctions Using Simulated Likelihood," develops an empirical framework that fully exploits all the shape restrictions arising from economic theory: bidding monotonicity and density affiliation. We directly model the valuation density so that bidding monotonicity is automatically satisfied, and restrict the parameter space to rule out all the nonaffiliated densities. Our method uses a simulated likelihood to allow for a very exible specification, but the posterior analysis is exact for the chosen likelihood. Our method controls the smoothness and tail behavior of the valuation density and provides a decision theoretic framework for auction design. We reanalyze a dataset of auctions for drilling rights in the Outer Continental Shelf that has been widely used in past studies. Our approach gives significantly different policy prescriptions on the choice of reserve price than previous methods, suggesting the importance of the theoretical shape restrictions. Lastly, in the essay, "Simple Approximation Methods for Bayesian Auction Design," we propose simple approximation methods for Bayesian decision making in auction design problems. Asymptotic posterior distributions replace the true posteriors in the Bayesian decision framework, which are typically a Gaussian model (second price auction) or a shifted exponential model (first price auction). Our method first approximates the posterior payoff using the limiting models and then maximizes the approximate posterior payoff. Both the approximate and exact Bayes rules converge to the true revenue maximizing reserve price under certain conditions. Monte Carlo studies show that my method closely approximates the exact procedure even for fairly small samples.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Economics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.