• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Ensemble Filtering Methods for Nonlinear Dynamics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1101_sip1_m.pdf
    Size:
    2.402Mb
    Format:
    PDF
    Description:
    azu_etd_1101_sip1_m.pdf
    Download
    Author
    Kim, Sangil
    Issue Date
    2005
    Keywords
    Particle Filter
    Maximum Entropy Filter
    Ensemble Kalman Filter
    Parameter Estimation
    Relative Entropy
    Advisor
    Eyink, Gregory L
    Bayly, Bruce J
    Committee Chair
    Eyink, Gregory L
    Bayly, Bruce J
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The standard ensemble filtering schemes such as Ensemble Kalman Filter (EnKF) and Sequential Monte Carlo (SMC) do not properly represent states of low priori probability when the number of samples is too small and the dynamical system is high dimensional system with highly non-Gaussian statistics. For example, when the standard ensemble methods are applied to two well-known simple, but highly nonlinear systems such as a one-dimensional stochastic diffusion process in a double-well potential and the well-known three-dimensional chaotic dynamical system of Lorenz, they produce erroneous results to track transitions of the systems from one state to the other.In this dissertation, a set of new parametric resampling methods are introduced to overcome this problem. The new filtering methods are motivated by a general H-theorem for the relative entropy of Markov stochastic processes. The entropy-based filters first approximate a prior distribution of a given system by a mixture of Gaussians and the Gaussian components represent different regions of the system. Then the parameters in each Gaussian, i.e., weight, mean and covariance are determined sequentially as new measurements are available. These alternative filters yield a natural generalization of the EnKF method to systems with highly non-Gaussian statistics when the mixture model consists of one single Gaussian and measurements are taken on full states.In addition, the new filtering methods give the quantities of the relative entropy and log-likelihood as by-products with no extra cost. We examine the potential usage and qualitative behaviors of the relative entropy and log-likelihood for the new filters. Those results of EnKF and SMC are also included. We present results of the new methods on the applications to the above two ordinary differential equations and one partial differential equation with comparisons to the standard filters, EnKF and SMC. These results show that the entropy-based filters correctly track the transitions between likely states in both highly nonlinear systems even with small sample size N=100.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Applied Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.