• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A New High-Sensitivity Subsurface Sensing System

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2255_sip1_m.pdf
    Size:
    3.461Mb
    Format:
    PDF
    Description:
    azu_etd_2255_sip1_m.pdf
    Download
    Author
    Krichenko, Oleg
    Issue Date
    2007
    Keywords
    electronics
    engineering
    geophysics
    imaging
    sensing
    subsurface
    Advisor
    Dvorak, Steven L
    Sternberg, Ben K
    Committee Chair
    Dvorak, Steven L
    Sternberg, Ben K
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    We developed a prototype geophysical system that currently has a dynamic range of 126dB. We also calculate the full potential of our design to achieve a dynamic range of greater than 160dB, which is orders of magnitude higher than what is currently offered by state of the art technology in geophysical instrumentation. We have been successful in reducing measurement errors that are common limiting factors in achieving high measurement sensitivity in practice. We reduced the measurement error caused by mechanical deformations of the measurement apparatus from 70PPM to less than 1PPM. As a result of developing a novel measurement method for using a rotating antenna array and digital nulling, we achieved a level of temporal drift of less than 1PPM over a 50 minute time period, which is a significant improvement compared to the drift of greater than 100PPM for the state of the art geophysical instrumentation. We also used a method of simultaneous calibration of the secondary fields in order to correct the measured data for the long-term gain variations in the system response. As a result, we reduced the percentage error in the RE and IM components of the target response measured over a 105-minute period of time from 5% and 80% to 0.5% and 2%, respectively. We have gained a substantial reduction of the measurement errors caused by the background response of the earth by using the antenna array in a vertical orientation relative to the earth's surface. We demonstrated that our measurement method increases survey efficiency because of a more informative set of data. We tested our prototype system with a section of steel pipe, which is a standard target used to determine the sensitivity of commercial metal detectors. The measurement results showed that our current system will detect this particular target at a 2.0m depth below the earth's surface, which is 0.5m better than the 1.5m detection depth achieved by the EM61-MK2. When the full potential of our design is realized, we estimate the projected depth of detection to increase to 9m, which is six times greater than the detection depth achieved by the EM61-MK2.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Electrical & Computer Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.