• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Selection Of Inventory Control Points In Multi-Stage Pull Production Systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2089_sip1_m.pdf
    Size:
    1.398Mb
    Format:
    PDF
    Description:
    azu_etd_2089_sip1_m.pdf
    Download
    Author
    Krishnan, Shravan K
    Issue Date
    2007
    Keywords
    Systems & Industrial Engineering
    Advisor
    Askin, Ronald G.
    Son, Young Jun
    Committee Chair
    Askin, Ronald G.
    Son, Young Jun
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    We consider multistage, stochastic production systems using pull control for production authorization in discrete parts manufacturing. These systems have been widely implemented in recent years and constitute a significant aspect of lean manufacturing. Extensive research has appeared on the optimal sizing of buffer inventory levels in such systems. However the issue of control points, i.e. where in the multistage sequence to locate the output buffers, has not been addressed for pull systems. Allowable container/batch sizes, optimal inventory levels, and ability of systems to automatically adjust to stochastic demand depend on the location of these control points.We begin by examining a serial production system producing a single part type. Two models are examined in this regard. In the first, container size is independent of the control section, while in the second, container sizes are section dependent. Additionally, a nesting policy is introduced which introduces the additional constraint that the container size in a section is related to the container size in any other section by a power of two.Necessary and sufficient conditions are derived for ensuring that a single, end-of-line accumulation point is optimal. When this is not the case, an algorithm is provided to determine the optimal control points. Effects of factors such as value added structure, fixed location cost, setup and material handling cost, kanban collection time, and material transportation time on the control structure are investigated. Results are extended to determine the optimal container size when lead time at a stage is a concave function of container size.The study is then extended to a multi-product case. Queuing aspects are introduced to account for the interaction between the different part types. The queuing model used is a modification of the Decomposition/Recomposition model described in Shantikumar and Buzacott (1981). The models in the chapter do not assume a serial structure any longer. Additionally, general interarrival and service time distributions are considered. The effect of number of products, demand arrival distribution, value added structure, and number of stages on the control structure and system cost is investigated.Finally, a simulation model is developed in Chapter 5 to verify and validate the mathematical models described in Chapters 3 and 4.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Systems & Industrial Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.