• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Nano-Scale Investigation of Structural and Electrical Properties of Self-Organized Thin Films of Phthalocyanines: A Progress towards New Photovoltaic Material

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10018_sip1_m.pdf
    Size:
    12.87Mb
    Format:
    PDF
    Description:
    azu_etd_10018_sip1_m.pdf
    Download
    Author
    Kumaran, Niranjani
    Issue Date
    2008
    Keywords
    Hydrogen Bonding
    Organic Photovoltaic Cells
    Phthalocyanine
    Self-Assembly
    Thin Films
    Advisor
    Armstrong, Neal R.
    Committee Chair
    Armstrong, Neal R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Ongoing efforts to improve the efficiency of organic photovoltaic cells emphasize the significance of the architecture of molecular assemblies in thin films, at nanometer and micron length scales, to enhance both exciton diffusion and charge transport, in donor and acceptor layers. Controlled growth of molecules via self-assembly techniques presents new opportunities to develop nano-structured organic thin films for electronic devices. This thesis is focused on controlling the orientation of phthalocyanine molecular assemblies in thin films in order to demonstrate the impact of microscopic control of molecular order on electrical properties and organic solar cell device performance.The studies performed here provide insights into the self-assembling behavior, film morphology, nanoscale electrical conductivity, and photovoltaic properties of a disk-shaped peripherally substituted phthalocyanine (Pc) molecule possessing amide functional groups in the side chains. Amide functionality was integrated in the side chains of this phthalocyanine molecule with the purpose of increasing the intra-columnar interaction through formation of a hydrogen bonding network between molecules, and to guide columnar orientation in a preferred direction via specific surface-molecule interactions. It is realized that molecule-substrate interactions must dominate over molecule-molecule interactions to achieve control over the deposition of molecules in a preferred direction for organic solar cell applications. Microscopic imaging and spectroscopic studies confirm the formation of flat-lying, well ordered, layered phthalocyanine films as anticipated.The remarkable electrical conductivity of the flat-lying phthalocyanine molecules, as studied by Conducting tip Atomic Force Microscopy (C-AFM) provide the impetus for the formation of organic solar cells based on layers of these hydrogen bonding phthalocyanine molecules. The photocurrent from devices that are made with the ordered Pc molecules and disordered Pc molecules as the primary photoactive donor layer, and vacuum deposited C60 as the acceptor material, were evaluated. The results presented here demonstrate the feasibility of increasing the photogenerated current by controlling the molecular organization in the photo active layer.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.