• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    ULTRASONIC TRANSDUCER MODELING FOR ACOUSTIC MICROSCOPY & ITS APPLICATION IN BIOLOGICAL MATERIAL CHARACTERIZATION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1221_sip1_m.pdf
    Size:
    2.077Mb
    Format:
    PDF
    Description:
    azu_etd_1221_sip1_m.pdf
    Download
    Author
    Lee, Joon Pyo
    Issue Date
    2005
    Keywords
    NONDESTRUCTIVE EVALUATION
    Advisor
    KUNDU, TRIBKRAM
    Committee Chair
    KUNDU, TRIBKRAM
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The determination of material properties for very small specimens such as biological cells or semiconductor microchips is extremely difficult and has been a challenging issue for several decades. One important constraint during these measurements is not to harm the specimens during the test process because the specimens, biological cells in particular, are vulnerable to the test itself even during a short period of testing time.Nondestructive evaluation (NDE) is the only suitable precess for such applications. It is fast, causes no disturbance and can give a real time response while being cost effective. Many NDE methods are available today, such as, laser based techniques, Radiography, Magnetic techniques, High resolution photography and other optical techniques, MRI, acoustic and ultrasonic techniques to name a few. Ultrasound is the most popular tool for NDE. As specimens become smaller, the need for shorter wave length ultrasound increases dramatically.The use of acoustic waves in microscopy technology provides many more benefits than its conventional optical microscope counterpart. One such benefit is its ability to inspect a specimen in dark. Another is the capability to see inside an optically opaque specimen. Today, very high frequency, higher than 1 Giga Hertz (109 Hz), ultrasound is being used. This technology has improved at the same pace as the development of electronics and computer science. In acoustic microscopy experiments wave speed and wave attenuation in the specimen are measured by the V(f) technique. A specimen's density, Poisson's ratio and Young's modulus are directly related to the wave speed. V(f) method, as discussed in this dissertation, has some advantages over the more commonly used V(z) method. In order to correctly estimate the wave speed and attenuation in the specimen, the transducer modeling should be completed first. The Distributed Point Source Method (DPSM) is used in this dissertation to model a 1 GHz acoustic microscope lens. Then the model-predicted pressure field is used in a FORTRAN program to calculate the thickness profile and properties of biological cell specimens from experimental data.Transducer modeling at 1 GHz has rarely been attempted earlier because it requires an immense amount of computer time and memory. In this dissertation 1 GHz transducer modeling is conducted by taking advantage of the axisymmetric geometry of the acoustic microscope lens. This exploitation of symmetry in the modeling process has not been attempted prior to this dissertation.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Engineering Mechanics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.