We are upgrading the repository! A content freeze is in effect until December 6th, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.advisorSon, Young-Junen_US
dc.contributor.authorLee, Seung Ho
dc.creatorLee, Seung Hoen_US
dc.date.accessioned2011-12-05T22:03:00Z
dc.date.available2011-12-05T22:03:00Z
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/10150/193788
dc.description.abstractModeling comprehensive human decision behaviors in a unified and extensible framework is quite challenging. In this research, an integrated Belief-Desire-Intention (BDI) modeling framework is proposed to represent the human decision behavior, whose submodules (Belief, Desire, Decision-Making, and Emotion modules) are based on a Bayesian belief network (BBN), Decision-Field-Theory (DFT), a probabilistic depth first search (PDFS) technique, and a BBN-reinforcement (Q-Learning) hybrid learning algorithm. A key novelty of the proposed model is its ability to represent various human decision behaviors such as decision-making, decision-planning, and learning in a unified framework.To this end, first, we extend DFT (a widely known psychological model for preference evolution) to cope with dynamic environments. The extended DFT (EDFT) updates the subjective evaluation for the alternatives and the attention weights on the attributes via BBN under the dynamic environment. To illustrate and validate the proposed EDFT, a human-in-the-loop experiment is conducted for a virtual stock market. Second, a new approach to represent learning (a dynamic evolution process of underlying modules) in the human decision behavior is proposed under the context of the BDI framework. Our research focuses on how a human adjusts his perception process (involving BBN) dynamically against his performance (depicted via a confidence index) in predicting the environment as part of his decision-planning. To this end, Q-learning is employed and further developed.To mimic realistic human behaviors, attributes of the BDI framework are reverse-engineered from human-in-the-loop experiments conducted in the Cave Automatic Virtual Environment (CAVE). The proposed modeling framework is demonstrated for a human's evacuation behaviors in response to a terrorist bomb attack. The constructed simulation has been used to test the impact of several factors (e.g., demographics, number of police officers, information sharing via speakers) on evacuation performance (e.g., average evacuation time, percentage of casualties).In addition, the proposed human decision behavior model is extended for decisions of many stakeholders that form a complex social network in the community-based development of software systems.To the best of our knowledge, the proposed human decision behavior modeling framework is one of the first efforts to represent various human decision behaviors (e.g., decision-making, decision-planning, dynamic learning) in a unified BDI framework.
dc.language.isoENen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectBaysian belief networken_US
dc.subjectBDIen_US
dc.subjectDecision field theoryen_US
dc.subjectHuman decisionen_US
dc.subjectHuman learningen_US
dc.titleINTEGRATED HUMAN DECISION BEHAVIOR MODELING UNDER AN EXTENDED BELIEF-DESIRE-INTENTION FRAMEWORKen_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.contributor.chairSon, Young-Junen_US
dc.identifier.oclc659752370en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberSon, Young-Junen_US
dc.contributor.committeememberBahill, Terry A.en_US
dc.contributor.committeememberSzidarovszky, Ferencen_US
dc.contributor.committeememberZeng, Danielen_US
dc.identifier.proquest10606en_US
thesis.degree.disciplineSystems & Industrial Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-06-19T07:24:35Z
html.description.abstractModeling comprehensive human decision behaviors in a unified and extensible framework is quite challenging. In this research, an integrated Belief-Desire-Intention (BDI) modeling framework is proposed to represent the human decision behavior, whose submodules (Belief, Desire, Decision-Making, and Emotion modules) are based on a Bayesian belief network (BBN), Decision-Field-Theory (DFT), a probabilistic depth first search (PDFS) technique, and a BBN-reinforcement (Q-Learning) hybrid learning algorithm. A key novelty of the proposed model is its ability to represent various human decision behaviors such as decision-making, decision-planning, and learning in a unified framework.To this end, first, we extend DFT (a widely known psychological model for preference evolution) to cope with dynamic environments. The extended DFT (EDFT) updates the subjective evaluation for the alternatives and the attention weights on the attributes via BBN under the dynamic environment. To illustrate and validate the proposed EDFT, a human-in-the-loop experiment is conducted for a virtual stock market. Second, a new approach to represent learning (a dynamic evolution process of underlying modules) in the human decision behavior is proposed under the context of the BDI framework. Our research focuses on how a human adjusts his perception process (involving BBN) dynamically against his performance (depicted via a confidence index) in predicting the environment as part of his decision-planning. To this end, Q-learning is employed and further developed.To mimic realistic human behaviors, attributes of the BDI framework are reverse-engineered from human-in-the-loop experiments conducted in the Cave Automatic Virtual Environment (CAVE). The proposed modeling framework is demonstrated for a human's evacuation behaviors in response to a terrorist bomb attack. The constructed simulation has been used to test the impact of several factors (e.g., demographics, number of police officers, information sharing via speakers) on evacuation performance (e.g., average evacuation time, percentage of casualties).In addition, the proposed human decision behavior model is extended for decisions of many stakeholders that form a complex social network in the community-based development of software systems.To the best of our knowledge, the proposed human decision behavior modeling framework is one of the first efforts to represent various human decision behaviors (e.g., decision-making, decision-planning, dynamic learning) in a unified BDI framework.


Files in this item

Thumbnail
Name:
azu_etd_10606_sip1_m.pdf
Size:
4.538Mb
Format:
PDF
Description:
azu_etd_10606_sip1_m.pdf

This item appears in the following Collection(s)

Show simple item record