Show simple item record

dc.contributor.authorLeitner, Frederick Carl
dc.creatorLeitner, Frederick Carlen_US
dc.date.accessioned2011-12-05T22:03:48Z
dc.date.available2011-12-05T22:03:48Z
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/10150/193802
dc.description.abstractWe discuss the deformation theory of non-commutative formal groups G in positive characteristic. Under a geometric assumption on G, we produce a commutative formal group H whose distribution bialgebra has a certain skewed Poisson structure. This structure gives first order deformation data which integrates to the distribution bialgebra of G.
dc.language.isoENen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectFormal Groupsen_US
dc.subjectPositive Characterisitcen_US
dc.subjectNoncommutativeen_US
dc.titleDeformation Theory of Non-Commutative Formal Groups in Positive Characteristicen_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.contributor.chairKim, Minhyongen_US
dc.identifier.oclc137354524en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberKim, Minhyongen_US
dc.contributor.committeememberUlmer, Douglasen_US
dc.contributor.committeememberBressler, Paulen_US
dc.contributor.committeememberLux, Klausen_US
dc.contributor.committeememberVasiu, Adrianen_US
dc.identifier.proquest1234en_US
thesis.degree.disciplineMathematicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePhDen_US
refterms.dateFOA2018-08-24T19:57:32Z
html.description.abstractWe discuss the deformation theory of non-commutative formal groups G in positive characteristic. Under a geometric assumption on G, we produce a commutative formal group H whose distribution bialgebra has a certain skewed Poisson structure. This structure gives first order deformation data which integrates to the distribution bialgebra of G.


Files in this item

Thumbnail
Name:
azu_etd_1234_sip1_m.pdf
Size:
472.7Kb
Format:
PDF
Description:
azu_etd_1234_sip1_m.pdf

This item appears in the following Collection(s)

Show simple item record