• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    GLASSES AND GLASS-CERAMICS TRANSPARENT IN THE INFRARED RANGE TO BE USED AS OPTICAL SENSORS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11367_sip1_m.pdf
    Size:
    11.61Mb
    Format:
    PDF
    Description:
    azu_etd_11367_sip1_m.pdf
    Download
    Author
    Lepine, Eric
    Issue Date
    2010
    Keywords
    Materials Science & Engineering
    Committee Chair
    Lucas, Pierre
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The present work deals with the study of infrared transparent glasses and their applications for sensor use. Their behavior under LASER irradiation, as well as the possibility to modify the surface, and the exploration of new glass compositions has been studied. Four tasks were completed with the main goal of designing infrared optical sensors. In a first task, the deposition of various thin films at the surface of a chalcogenide glass has been investigated in order to produce nano porous surfaces. Films were produced by vapor deposition and cathodic sputtering. Vapor deposition did not produce homogeneous films while cathodic sputtering lead to layers of controlled thickness which could produce a porous surface by selective etching. In a second task, the possibility of writing waveguide with femtosecond laser was investigated in Ge-Ga-S/Se-CsCl glasses. It was shown that high power leads to negative index changes unfit for light guiding, while low power lead to small positive index change. It was also shown that the filamentation method lead to homogeneous waveguide with large positive index changes. In a third task, photo-induced phenomena were investigated, especially photo-induced fluidity, on the binary system Ge-Se. The study initiated with the work on relaxation of fiber optics of composition Ge-Se₃ Ge-Se₄ and Ge-Se₉ and their response to shear stress under LASER irradiation in the Urbach region. This leads to the determination of their viscosity under irradiation as a function of the power and wavelength used. This preliminary study enabled using this technique for optical tapering of chalcogenide fibers. A tapered fiber was obtained with good control over the diameter, and length of the sensor and improved sensing sensitivity was demonstrated. Finally, exploration of new glassy systems containing no chalcogenide elements but only heavy halide compounds (PbI₂, PbBr₂, CsI…) were investigated. These amorphous ionic compounds lead to infrared window transmitting from 500 nm up to 26 μm, unfortunately their moisture sensitivity as well as poor mechanical and thermal properties did not make them good candidate for sensor applications.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Materials Science & Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.