• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Feature Construction, Selection And Consolidation For Knowledge Discovery

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2218_sip1_m.pdf
    Size:
    779.7Kb
    Format:
    PDF
    Description:
    azu_etd_2218_sip1_m.pdf
    Download
    Author
    Li, Jiexun
    Issue Date
    2007
    Keywords
    knowledge discovery
    feature construction
    feature selection
    feature consolidation
    Advisor
    Chen, Hsinchun
    Committee Chair
    Chen, Hsinchun
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    With the rapid advance of information technologies, human beings increasingly rely on computers to accumulate, process, and make use of data. Knowledge discovery techniques have been proposed to automatically search large volumes of data for patterns. Knowledge discovery often requires a set of relevant features to represent the specific domain. My dissertation presents a framework of feature engineering for knowledge discovery, including feature construction, feature selection, and feature consolidation.Five essays in my dissertation present novel approaches to construct, select, or consolidate features in various applications. Feature construction is used to derive new features when relevant features are unknown. Chapter 2 focuses on constructing informative features from a relational database. I introduce a probabilistic relational model-based approach to construct personal and social features for identity matching. Experiments on a criminal dataset showed that social features can improve the matching performance. Chapter 3 focuses on identifying good features for knowledge discovery from text. Four types of writeprint features are constructed and shown effective for authorship analysis of online messages. Feature selection is aimed at identifying a subset of significant features from a high dimensional feature space. Chapter 4 presents a framework of feature selection techniques. This essay focuses on identifying marker genes for microarray-based cancer classification. Our experiments on gene array datasets showed excellent performance for optimal search-based gene subset selection. Feature consolidation is aimed at integrating features from diverse data sources or in heterogeneous representations. Chapter 5 presents a Bayesian framework to integrate gene functional relations extracted from heterogeneous data sources such as gene expression profiles, biological literature, and genome sequences. Chapter 6 focuses on kernel-based methods to capture and consolidate information in heterogeneous data representations. I design and compare different kernels for relation extraction from biomedical literature. Experiments show good performances of tree kernels and composite kernels for biomedical relation extraction.These five essays together compose a framework of feature engineering and present different techniques to construct, select, and consolidate relevant features. This feature engineering framework contributes to the domain of information systems by improving the effectiveness, efficiency, and interpretability of knowledge discovery.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Management Information Systems
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.