• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Tribological, Kinetic and Thermal Characteristics of Copper Chemical Mechanical Planarization

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1378_sip1_m.pdf
    Size:
    7.690Mb
    Format:
    PDF
    Description:
    azu_etd_1378_sip1_m.pdf
    Download
    Author
    Li, Zhonglin
    Issue Date
    2005
    Keywords
    copper chemical mechanical planarization
    tribology
    flash heating model
    coefficient of friction
    Advisor
    Philipossian, Ara
    Committee Chair
    Philipossian, Ara
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Copper polishing performance depends significantly on the properties of pads, slurries, conditioning, pressure, sliding velocity, slurry flow rate and temperature. A slight variance in each of these parameters will cause significant change in polising results. Various investigations are performed during this study to understand the effect of consumables and other main operating parameters on copper polishing in terms of removal rate, lubrication mechanism, and temperature transients. A modified two-step Langmuir-Hinshelwood removal rate model and a flash heating thermal model are developed to describe the removal mechanism.Results indicate that grain size plays an important role during copper polishing. Smaller grain size may enhance the chemical rate by providing a higher density of favorable reaction sites. However, denser grain boundaries due to smaller grain size may reduce the mechanical rate by increasing the probability of disruption of three body sliding contact. It is found that removal rate increases as slurry flow increases from 60 to 80 cc/min because higher slurry flow rate can provide more reactants to the system. Then removal rate decreases as slurry flow rate is further increased to 140 cc/min, which is due to synergic effects of the wafer temperature, slurry flow and slurry residence time under the wafer. The observed removal rate drop is thought to be due to the change of the wafer temperature at high sliding velocity.Experimental results from eight slurry formulations with various abrasize size and content show that in the case of 13-nm abrasives, the dominant tribological mechanism is that of partial lubrication, while in the case of 35-nm abrasives, the dominant tribological mechanism is that of boundary lubrication. COF values of the slurry with surfactant are generally lower that those of the slurry without surfactant.Logarithmic spiral positive pad, whose spiral groove is at a slight angle to the pad rotation direction, shows the highest average COF. The radial pad results in the smallest average COF. For all types of the grooved pads investigated, CMP is mechanically limited at low pV, and chemically limited at high pV. Non-Prestonian behavior is thought to be due to variations of COF and substrate temperatures.Dual Emission UV Light Enhanced Fluorescence results indicate that during polishing the wafer is tilted towards the center of the pad and that the extent of wafer tilt is a strong function of diamond disc pressure. Increasing the oscillation frequency of the diamond disc or the rotation rate decreases slurry film thickness. Slurry film thickness increases with the slurry flow rate. Also slurry film thickness strongly depends on diamond disc design.
    Type
    text
    Electronic Dissertation
    Degree Name
    DEng
    Degree Level
    doctoral
    Degree Program
    Chemical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.