• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Investigation and Control of Alkylsilane Stationary Phase Structure in Reversed Phase Liquid Chromatography

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1633_sip1_m.pdf
    Size:
    15.14Mb
    Format:
    PDF
    Description:
    azu_etd_1633_sip1_m.pdf
    Download
    Author
    Liao, Zhaohui
    Issue Date
    2006
    Keywords
    Sationary phases
    Raman spectroscopy
    Liquid chromatography
    Conformational order
    Shape selectivity
    Advisor
    Pemberton, Jeanne E.
    Committee Chair
    Pemberton, Jeanne E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Investigation and control of alkylsilane stationary phase structure in reversed phase liquid chromatography is presented. Raman spectroscopy is used to probe the alkyl chain conformational order and interchain coupling as a function of various chromatographic conditions. A new method is further developed to fabricate alkylsilane stationary phases with controlled surface coverage. The alkyl chain conformational order and interchain coupling of a series of high-density docosylsilane (C22) bonded stationary phases is shown as a function of temperature, surface coverage, polymerization method, common solvents and solutes. The conformational order of C22 stationary phases is compared to that of octadecylsilane (C18) stationary phases to understand the chain length effect on stationary phase structure. The conformational order information as indicated by Raman spectral order indicators for a C22 phase are correlated with the capacity factor and separation efficiency for each solute studied to gain insight into the retention mechanism. These studies help to understand the origin of stationary phase shape selectivity and the separation process in general. Based on these results, the molecular pictures at the stationary phase/solvent interface are proposed. The effect of pressurized solvent environments on two C18 phases is studied to obtain direct evidence for changes in stationary phase structure due to pressure. These changes are compared to effects of solvation relative to air in the same solvents. In addition, Raman spectral order indicators are identified for perdeuterated alkyl-containing system. This study provides a foundation for studying stationary phase structure in complex systems comprised of long alkyl-containing solutes.A further development of a new method is presented as well for synthesizing alkylsilane stationary phases with precisely controlled surface coverage by using a displaceable surface template monolayer of n-alcohol. A mechanism for this process is proposed based on the studies of n-alcohol concentration and chain length effect on the stationary phase surface coverage. The utility of these new stationary phases as chromatographic support is demonstrated. The shape selectivity for these new phases is comparable to or better than similar phases prepared by conventional methods.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.