• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Behavioral and Neurochemical Consequences of Cortical Spreading Depression in Freely Moving Rats

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10236_sip1_m.pdf
    Size:
    2.979Mb
    Format:
    PDF
    Description:
    azu_etd_10236_sip1_m.pdf
    Download
    Author
    Lindstrom, Beatriz Fioravanti
    Issue Date
    2009
    Keywords
    Allodynia
    Migraine
    Rat
    Spreading Depression
    Advisor
    Vanderah, Todd W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Cortical Spreading Depression (CSD) is characterized by a wave of neuronal and glial depolarization followed by depression of bioelectrical activity that slowly propagates through the cortex of many species, including humans. CSD is associated with brain disorders such as stroke, head trauma and migraine. Many earlier studies have provided compelling evidence that CSD is the underlying mechanism of aura in migraine; however, whether CSD can elicit headache associated with migraine is not fully understood. Cutaneous allodynia is highly prevalent in the peri-orbital area and extracephalic sites of migraine patients, suggesting that sensitization of primary afferents and central trigeminovascular neurons in these patients could be initiated by the underlying mechanism of aura.Unlike previous reports on the interaction between CSD and the trigeminal system, in which nociceptive behavior could not be measured since they employed anesthetized animals, we designed a model in which freely moving rats could be monitored for both CSD events and behavior responses due to pinprick plus KCl injection to the occipital cortex. We show that significant tactile hypersensitivity of the periorbital region of the face and hindpaws develop in a time-dependent manner following CSD. Enhanced expression of Fos protein and increased mRNA levels of the inflammatory cytokines IL-1beta and IL-6 are found within the trigeminal nucleus caudalis (TNC) two hours following cortical injection. We further show that systemic administration of anti-migraine drugs such as sumatriptan, naproxen and CGRP(8-37) (a CGRP antagonist) attenuate the generalized allodynia that ensue following cortical stimulation by KCl. Microinjection of bupivacaine in the ipsilateral trigeminal ganglion or in the rostral ventromedial medulla (RVM) prior to cortical pinprick plus KCl injection reversibly diminishes tactile hypersensitivity, suggesting that RVM pain-facilitating cells become activated by a trigeminal-RVM pathway following CSD. In addition we demonstrate that cortical pinprick plus KCl injection induced CSD events in 24/28 (85%) rats, among which 66% and 87% developed allodynia in the face and hindpaw, respectively.These studies suggest a potential association between CSD and development of hypersensitivity in rats, indicating that this model can be used to investigate the role of CSD-evoked migraine-related pain and to explore novel therapeutic strategies.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Medical Pharmacology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.