Show simple item record

dc.contributor.advisorLichtenberger, Dennis L.en_US
dc.contributor.authorLockett, Lani Victoria
dc.creatorLockett, Lani Victoriaen_US
dc.date.accessioned2011-12-05T22:06:52Z
dc.date.available2011-12-05T22:06:52Z
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/10150/193874
dc.description.abstractThe work presented in this dissertation focuses on the [FeFe]-hydrogenase active site as inspiration for the design and synthesis of complexes capable of the electrocatalytic generation of molecular hydrogen from protons and electrons. The majority of work discussed uses gas-phase photoelectron spectroscopy (PES) and density functional theory (DFT) to probe and analyze the bonding and electron distribution in potential catalysts. These two techniques are also used to explore the nature of cyanide as a ligand, due to its presence and unknown role in these enzymes. This dissertation begins with the study of (η⁵-C₅H₅)Fe(CO)₂X (FpX) and (η⁵- C₅Me₅)Fe(CO)₂X (Fp*X) complexes where X = H⁻, Cl⁻, and CN⁻ to assess and compare their π-accepting abilities, which is contradicted in the literature. The shifts in ionization energies measured by PES provide a measure of the relative bonding effects. The results indicate cyanide is, overall, a weak π-acceptor, and the σ- and π-donor interactions are important to understanding the chemistry. The molecule [(μ-ortho-C₆H₄S₂)][Fe(CO)₃]₂ was examined, in part due to the delocalized π-orbitals of the C₆H₄S₂ ligand, which could facilitate the redox chemistry necessary for catalysis. Computations show that upon ionization, the complex adopts a semi-bridging carbonyl; termed “rotated structure”. The reorganization energy of this geometry change was determined, which may provide understanding of how the active site in the enzyme enables electron transfer to achieve this catalysis. Next complexes of the form (μ-SCH₂XCH₂S)[Fe(CO)₃]₂, where X=CH₂, O, NH, ᵗBuN, MeN, were explored in order to provide insight to the unknown atom at the central bridging position of the alkyl chain in the [FeFe]-hydrogenase enzyme. The likelihood of a rotated cationic structure is also shown, with reorganization energy values similar to that seen for [(μ-ortho-C₆H₄S₂)][Fe(CO)₃]₂. The final chapter explores the replacement of selenium for sulfur in (μ- X(CH₂)₃X)[Fe(CO)₃]₂ and (μ-X(CH₂)₂CH(CH₃)X)[Fe(CO)₃]₂, where X is either sulfur or selenium. The PES data show destabilization of the selenium complex ionizations compared to the sulfur complexes and a lower reorganization energy was calculated. The computed HOMO-LUMO gap energy for the selenium-based complex is roughly 0.17 eV smaller than for the sulfur analogs, which may indicate a lower reduction potential is needed.
dc.language.isoENen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectCatalysisen_US
dc.subjectDensity Functional Theoryen_US
dc.subjectHydrogenaseen_US
dc.subjectPhotoelectron Spectroscopyen_US
dc.titleGas-Phase Photoelectron Spectroscopy and Computational Studies of [FeFe]-Hydrogenase Inspired-Catalysts for Hydrogen Productionen_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.contributor.chairLichtenberger, Dennis L.en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberLichtenberger, Dennis L.en_US
dc.contributor.committeememberWalker, F. Annen_US
dc.contributor.committeememberEnemark, John H.en_US
dc.contributor.committeememberCusanovich, Michaelen_US
dc.contributor.committeememberGlass, Richard S.en_US
dc.identifier.proquest10381en_US
thesis.degree.disciplineChemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePh.D.en_US
refterms.dateFOA2018-06-25T01:48:42Z
html.description.abstractThe work presented in this dissertation focuses on the [FeFe]-hydrogenase active site as inspiration for the design and synthesis of complexes capable of the electrocatalytic generation of molecular hydrogen from protons and electrons. The majority of work discussed uses gas-phase photoelectron spectroscopy (PES) and density functional theory (DFT) to probe and analyze the bonding and electron distribution in potential catalysts. These two techniques are also used to explore the nature of cyanide as a ligand, due to its presence and unknown role in these enzymes. This dissertation begins with the study of (η⁵-C₅H₅)Fe(CO)₂X (FpX) and (η⁵- C₅Me₅)Fe(CO)₂X (Fp*X) complexes where X = H⁻, Cl⁻, and CN⁻ to assess and compare their π-accepting abilities, which is contradicted in the literature. The shifts in ionization energies measured by PES provide a measure of the relative bonding effects. The results indicate cyanide is, overall, a weak π-acceptor, and the σ- and π-donor interactions are important to understanding the chemistry. The molecule [(μ-ortho-C₆H₄S₂)][Fe(CO)₃]₂ was examined, in part due to the delocalized π-orbitals of the C₆H₄S₂ ligand, which could facilitate the redox chemistry necessary for catalysis. Computations show that upon ionization, the complex adopts a semi-bridging carbonyl; termed “rotated structure”. The reorganization energy of this geometry change was determined, which may provide understanding of how the active site in the enzyme enables electron transfer to achieve this catalysis. Next complexes of the form (μ-SCH₂XCH₂S)[Fe(CO)₃]₂, where X=CH₂, O, NH, ᵗBuN, MeN, were explored in order to provide insight to the unknown atom at the central bridging position of the alkyl chain in the [FeFe]-hydrogenase enzyme. The likelihood of a rotated cationic structure is also shown, with reorganization energy values similar to that seen for [(μ-ortho-C₆H₄S₂)][Fe(CO)₃]₂. The final chapter explores the replacement of selenium for sulfur in (μ- X(CH₂)₃X)[Fe(CO)₃]₂ and (μ-X(CH₂)₂CH(CH₃)X)[Fe(CO)₃]₂, where X is either sulfur or selenium. The PES data show destabilization of the selenium complex ionizations compared to the sulfur complexes and a lower reorganization energy was calculated. The computed HOMO-LUMO gap energy for the selenium-based complex is roughly 0.17 eV smaller than for the sulfur analogs, which may indicate a lower reduction potential is needed.


Files in this item

Thumbnail
Name:
azu_etd_10381_sip1_m.pdf
Size:
4.735Mb
Format:
PDF
Description:
azu_etd_10381_sip1_m.pdf

This item appears in the following Collection(s)

Show simple item record