• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Instrumentation and Kinetic Studies of Surface-Induced Dissociation in a Time-of-Flight Mass Spectrometer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1579_sip1_m.pdf
    Size:
    2.170Mb
    Format:
    PDF
    Description:
    azu_etd_1579_sip1_m.pdf
    Download
    Author
    Majuwana Gamage, Chaminda
    Issue Date
    2006
    Keywords
    peptide fragmentation
    surface-induced dissociation
    unimolecular decay
    MALDI TOF
    TOF instrumentation
    fullerene
    Committee Chair
    Wysocki, Vicki H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The surface-induced dissociation (SID) method is introduced into a Bruker matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI TOF MS) as an efficient ion fragmentation method. Ion trajectory calculations using the SIMION 7.0 ion optics program are performed and results are combined with simple unimolecular decay calculations in order to study the kinetics of the SID processes. In this instrument, the observation time frame for SID fragments lies in the submicrosecond region, allowing the specific detection of submicrosecond fragmentation channels. MALDI-produced protonated peptides in the mass range of 700 - 1500 Da and radical ions produced by laser irradiation of fullerenes C60 and C70 are fragmented at a gold surface coated with a self-assembled monolayer of alkanethiol to obtain TOF SID TOF mass spectra. For the SID of peptides in the hyperthermal energy regime, a fragmentation time frame of tens to a few hundreds of nanoseconds was calculated for the observed fast fragmentation channels (Chapters 3 and 4). Theoretical and experimental peak shape comparisons assuming unimolecular decay kinetics indicated a log rate constant in the range 6 - 7 (Chapter 4). Energy and mass resolved kinetic studies are also carried out. The contribution of special structural features to peptide fragmentation and the possibility of different fragmentation mechanisms such as sequential and parallel pathways are investigated. The results indicate a unimolecular decay process for observed fast peptide fragments ruling out a surface-shattering mechanism. Fullerene ions, especially C60+., showed a fragmentation behavior producing C2n+. fragments with an even number of C units at collision energies in the range of 100 - 400 eV (Chapter 5). At around 400 eV, additional small fragments appeared that are apart by only a single C unit. According to the calculated fragmentation times and the theoretical and experimental peak shape comparisons assuming unimolecular decay kinetics, both these processes may be approximated by parallel fast unimolecular decay processes with fragmentation time frames of tens to hundreds of nanoseconds although the poor theoretical and experimental peak shape matching for example in the decay of C60+. to C19+. may suggest deviations from a one-step unimolecular decay process.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.