• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Inverse Stochastic Moment Analysis of Transient Flow in Randomly Heterogeneous Media

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1615_sip1_m.pdf
    Size:
    3.835Mb
    Format:
    PDF
    Description:
    azu_etd_1615_sip1_m.pdf
    Download
    Author
    Malama, Bwalya
    Issue Date
    2006
    Keywords
    Geostatistics
    Inverse methods
    Stochastic Hydrology
    Committee Chair
    Neuman, Shlomo P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A geostatistical inverse method of estimating hydraulic parameters of a heterogeneous porous medium at discrete points in space, called pilot points, is presented. In this inverse method the parameter estimation problem is posed as a nonlinear optimization problem with a likelihood based objective function. The likelihood based objective function is expressed in terms of head residuals at head measurement locations in the flow domain, where head residuals are the differences between measured and model-predicted head values. Model predictions of head at each iteration of the optimization problem are obtained by solving a forward problem that is based on nonlocal conditional ensemble mean flow equations. Nonlocal moment equations make possible optimal deterministic predictions of fluid flow in randomly heterogenous porous media as well as assessment of the associated predictive uncertainty. In this work, the nonlocal moment equations are approximated to second order in the standard deviation of log-transformed hydraulic conductivity, and are solved using the finite element method. To enhance computational efficiency, computations are carried out in the complex Laplace-transform space, after which the results are inverted numerically to the real temporal domain for analysis and presentation. Whereas a forward solution can be conditioned on known values of hydraulic parameters, inversion allows further conditioning of the solution on measurements of system state variables, as well as for the estimation of unknown hydraulic parameters. The Levenberg-Marquardt algorithm is used to solve the optimization problem. The inverse method is illustrated through two numerical examples where parameter estimates and the corresponding predictions of system state are conditioned on measurements of head only, and on measurements of head and log-transformed hydraulic conductivity with prior information. An example in which predictions of system state are conditioned only on measurements of log-conductivity is also included for comparison. A fourth example is included in which the estimation of spatially constant specific storage is demonstrated. In all the examples, a superimposed mean uniform and convergent transient flow field through a bounded square domain is used. The examples show that conditioning on measurements of both head and hydraulic parameters with prior information yields more reliable (low uncertainty and good fit) predictions of system state, than when such information is not incorporated into the estimation process.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Hydrology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.