• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Phytostabilization Potential of the Klondyke Mine Tailings Site and its Associated Microbial Community

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2085_sip1_m.pdf
    Size:
    1.185Mb
    Format:
    PDF
    Description:
    azu_etd_2085_sip1_m.pdf
    Download
    Author
    Mendez, Monica Orozco
    Issue Date
    2007
    Keywords
    phytostabilization
    mine tailings
    semiarid environment
    bacterial community
    Atriplex
    iron- and sulfur-oxidizers
    Advisor
    Maier, Raina M.
    Committee Chair
    Maier, Raina M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Phytostabilization is an emerging technology for the remediation of mine tailings sites. In arid and semiarid environments, mine tailings disposal sites are a major source of environmental pollution as they are subject to eolian dispersion and water erosion. Mine tailings are acidic to neutral, high in metal content, and nutrient poor. Furthermore, these sites remain unvegetated even after decades of no additional mining activity. In arid and semiarid regions, climatic variables such as high winds, salinity, and drought exacerbate the problem. The Klondyke mine tailings site is a model site for studying plant establishment in mine tailings within semiarid regions. It was a lead and zinc ore- processing operation from 1948 to 1958 and is similar in physicochemical characteristics to other acidic pyritic mine tailings.In a greenhouse study, a native drought tolerant halophyte, Atriplex lentiformis (Torr.) S. Wats., was evaluated for its potential as a phytostabilization candidate in compost-amended tailings from the Klondyke site. Germination, plant growth, and metal uptake of A. lentiformis were examined, and the microbial community was monitored by enumeration of autotrophic iron- and sulfur-oxidizing bacteria as well as heterotrophic bacteria. Results demonstrated that with 10 to 15% compost addition, growth of A. lentiformis was not affected and shoot metal concentrations were generally not a concern for foraging animals. Furthermore, the heterotrophic bacterial community is severely stressed but recovers with compost addition and successful plant growth. Therefore, A. lentiformis is a good candidate for phytostabilization of mine tailings with compost amendments.Poor revegetation of mine tailings has been attributed to the microbial community involved in acidifying tailings; however, no thorough microbial studies have been conducted. The second study characterizes the bacterial community of the Klondyke site and compares it to an offsite control sample. Results demonstrate that the heterotrophic community is indicative of soil health as it has a positive relationship with pH, phylotype richness, and diversity. Also, the mine tailings contain an unexplored diversity of acidophiles that are important in maintaining acidity and thus, metal bioavailability. Therefore, the bacterial community in mine tailings should be monitored in phytostabilization studies to evaluate restoration.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Soil, Water and Environmental Science
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.