Following Carbon's Evolutionary Path: From Nucleosynthesis to the Solar System
Name:
azu_etd_2472_sip1_m.pdf
Size:
5.195Mb
Format:
PDF
Description:
azu_etd_2472_sip1_m.pdf
Author
Milam, Stefanie NicoleIssue Date
2007Advisor
Ziurys, Lucy MCommittee Chair
Ziurys, Lucy M
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Studies of carbon's evolutionary path have been conducted via millimeter and submillimeter observations of circumstellar envelopes (CSEs), planetary nebulae (PNe), molecular clouds and comets. The 12C/13C isotope ratio was measured in Galactic molecular clouds using the CN isotopologs. A gradient of 12CN/13CN was determined to be 12C/13C = 6.01 DGC +12.28, where DGC is distance from the Galactic center. The results of CN are in agreement with those of CO and H2CO indicating a true ratio not influenced by fractionation effects or isotope-selective photodissociation. The 12C/13C isotope ratios in the envelopes of various types of stars were also measured from both CO and CN isotopologs. Such objects as carbon and oxygen-rich asymptotic giant branch (AGB) stars, supergiants, planetary nebulae, and S-type stars were observed. Results from this study indicate 12C/13C values for supergiants ~ 10 and AGB stars 12C/13C ~ 20- 76. Theory would suggest a lower ratio for objects undergoing third dredge-up, though this is seemingly not the case. Multiple carbon-bearing species including CO, HCN, HNC, CN, CS, and HCO+ have also been observed towards the oxygen-rich supergiant, VY CMa. This object has recently revealed a unique chemistry where carbon is not solely contained in CO, and may play a more important role in the chemical network of oxygen-rich circumstellar envelopes. Additionally, observations of species with carbon- carbon bonds, such as CCH and c-C3H2, have been conducted towards evolved planetary nebulae, such as the Helix and Ring nebulae. There is a close agreement in the inventories of species found in PNe and diffuse clouds, suggesting a potential molecular precursor to the interstellar medium. Observations of carbon-bearing species (H2CO and CO) in comets C/1995 O1 (Hale-Bopp), C/2001 Q4 (NEAT), and C/2002 T7 (LINEAR) have been conducted. Formaldehyde is known to have an extended distribution in these objects, likely arising from silicate-organic grains. Evidence of cometary fragmentation was also obtained for H2CO in comet T7 LINEAR as well as for HNC and HCO+ in Hale-Bopp. Such events could contribute to planetary distribution of organics.Type
textElectronic Dissertation
Degree Name
PhDDegree Level
doctoralDegree Program
ChemistryGraduate College