• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Novel Strategies for the Detection of Pathogens in Drinking Water

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10978_sip1_m.pdf
    Size:
    1.115Mb
    Format:
    PDF
    Description:
    azu_etd_10978_sip1_m.pdf
    Download
    Author
    Miles, Syreeta
    Issue Date
    2010
    Keywords
    distribution systems
    monitoring
    pathogens
    point-of-use
    prions
    water
    Advisor
    Pepper, Ian L.
    Committee Chair
    Pepper, Ian L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    To protect public health, detection methods have been developed to monitor drinking water for pathogens. The goal of this dissertation is to evaluate and utilize novel methods that enhances detection and further reduces the risk of waterborne pathogens. The study in Appendix A developed a method to monitor the microbial quality of treated drinking water at the tap utilizing point-of-use (POU) filter. Tap water supplies were monitored in vending machines throughout Southern Arizona using solid block carbon (SBC) filters as a monitoring tool. Out of 48 SBC filters 54.2% were positive for at least one organism. The number of filters positive for total coliforms, E. coli, Enterococci, and enterovirus was 13, 5, 19, and 3, respectively, corresponding to 27.1%, 10.4%, 39.6%, and 6.3% of the total filters. These results suggest that the SBC filter can be used to monitor large volumes of treated drinking water and detect the incidence of indicators and pathogens. The study in Appendix B evaluated the fate of infectious prions in multiple water sources quantitatively utilizing a method that only detects infectious prions. A reduction of PrPˢᶜ was observed at 25°C and 37°C ranging between 0.41-log₁₀ and 1.4-log₁₀ after 1 week. After 8 weeks at 25°C and 37°C, inactivation ranged between 1.65-log₁₀ and 2.15-log₁₀. A maximum rate of inactivation in water occurred at 50°C, ranging from 2.0-log₁₀ and 2.51-log₁₀ after one week. The results from all types of water suggest that dissolved organic matter and temperature influence PrPˢᶜ infectivity. The study in Appendix C evaluated real-time sensors for monitoring microbial contaminants. Most sensor parameters evaluated exhibited an increase in sensor response to an increase in E. coli concentrations. Responses to E. coli concentrations at or below 10³ cfu/mL were very low due to near background levels, and responses to concentrations above 10⁶ cfu/mL exceeded threshold levels for sensors that use light scattering methods due to saturation in the flow cell. The data produced effectively shows that the sensors evaluated could be used to monitor microbial intrusion events in water distribution systems.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Soil, Water and Environmental Science
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.