• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Wandering Behavior in Manduca Sexta: Investigating Steroid Hormone Effects on Neural Circuits For Locomotor Behavior

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1020_sip1_m.pdf
    Size:
    6.896Mb
    Format:
    PDF
    Description:
    azu_etd_1020_sip1_m.pdf
    Download
    Author
    Miller, Julie Elizabeth
    Issue Date
    2005
    Keywords
    hormones
    locomotion
    Advisor
    Levine, Richard B.
    Committee Chair
    Levine, Richard B.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Steroid hormones alter the excitability of neural circuits for motor behavior in vertebrates and invertebrates. The insect Manduca sexta, with its well-characterized developmental and endocrinological history, is a useful model system to study these effects. The wandering behavior is a stage-specific locomotor behavior triggered by the steroid hormone 20-hydroxyecdysone (20E) and consists of crawling and burrowing movements as the animal searches for a pupation site.The results of this dissertation show that 20E acts on the isolated larval nervous system to induce wandering activity. The mechanisms underlying the generation of this activity share features similar to other invertebrate systems, including the presence of segmental central pattern generating circuits. The time course for the nervous system response to 20E is long, suggestive of a genomic mechanism of action, and there are no earlier rapid effects of 20E on the intrinsic membrane properties of the abdominal motoneurons. The site of 20E action in inducing wandering locomotion is unlikely to be the abdominal motoneurons, but interneurons presynaptic to these motoneurons. One possible site of 20E action is the brain, which shows stage-dependent expression of ecdysteroid receptors in certain populations of neurons.Descending regulation by the brain and subesophageal ganglion (SEG) is exerted over the segmental motor circuits for crawling and burrowing and reflects stage-dependent differences. Prior to wandering, the brain exerts inhibition over the segmental motor circuits for crawling, but this inhibition is not present during wandering. Removal of the brain, SEG, and thoracic ganglia during on-going fictive locomotion alters the phase relationships between abdominal segments. Further alterations of fictive crawling motor output are observed in more reduced preparations, indicating the importance of intact connections between abdominal ganglia in the production of a reliable motor program. The SEG drives the fictive burrowing motor program. The burrowing motor program is more robustly expressed in nerve cords from wandering larvae, suggesting a stage-dependent difference due to 20E exposure. Subsequent future experiments will use electrophysiological methods and genetic manipulations in Manduca sexta and Drosophila melanogaster, respectively, to explore target sites for hormone action in the brain and the characterization of brain neurons that drive wandering behavior.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Neuroscience
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.