• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Exact and Heuristic Algorithms for Solving the Generalized Minimum Filter Placement Problem

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1311_sip1_m.pdf
    Size:
    649.7Kb
    Format:
    PDF
    Description:
    azu_etd_1311_sip1_m.pdf
    Download
    Author
    Mofya, Enock Chisonge
    Issue Date
    2005
    Keywords
    Integer programming
    Network security
    route-based filters
    Heuristics
    Advisor
    Smith, Jonathan C.
    Committee Chair
    Smith, Jonathan C.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    We consider a problem of placing route-based filters in a communication network to limit the number of forged address attacks to a prescribed level. Nodes in the network communicate by exchanging packets along arcs, and the originating node embeds the origin and destination addresses within each packet that it sends. In the absence of a validation mechanism, one node can send packets to another node using a forged origin address to launch an attack against that node. Route-based filters can be established at various nodes on the communication network to protect against these attacks. A route-based filter examines each packet arriving at a node, and determines whether or not the origin address could be legitimate, based on the arc on which the packet arrives, the routing information, and possibly the destination. The problem we consider seeks to find a minimum cardinality subset of nodes to filter so that the prescribed level of security is achieved.The primary contributions of this dissertation are as follows. We formulate and discuss the modeling of this filter placement problem as a mixed-integer program. We then show the sensitivity of the optimal number of deployed filters as the required level of security changes, and demonstrate that current vertex cover-based heuristics are ineffective for problems with relaxed security levels. We identify a set of special network topologies on which the filter placement problem is solvable in polynomial time, focusing our attention on the development of a dynamic programming algorithm for solving this problem on tree networks. These results can then in turn be used to derive valid inequalities for an integer programming model of the filter placement problem. Finally, we present heuristic algorithms based on the insights gained from our overall study for solving the problem, and evaluate their performance against the optimal solution provided by our integer programming model.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Systems & Industrial Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.