• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Effects of Insolation on Habitability and the Isotopic History of Martian Water

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10042_sip1_m.pdf
    Size:
    12.30Mb
    Format:
    PDF
    Description:
    azu_etd_10042_sip1_m.pdf
    Download
    Author
    Moores, John Edward
    Issue Date
    2008
    Keywords
    Comets
    Deuterium
    Mars
    planetary protection
    radiative transfer
    Water
    Advisor
    Smith, Peter H.
    Brown, Robert H.
    Committee Chair
    Smith, Peter H.
    Brown, Robert H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Three aspects of the Habitability of the Northern Plains of Mars to organics and terrestrial-like microbial life were assessed. (1) Protection offered by small surface features and (2) the breakdown of rocks to form soils were examined using a radiative transfer computer model. Two separate sublimation experiments provided a basis to improve (3) estimates of the amount of available water today and in the past by determining the fractionation of HDO between present-day reservoirs.(1) UV radiation sterilizes the hardiest of terrestrial organisms within minutes on the Martian surface. Small surface features including pits, trenches, flat faces and overhangs may create "safe havens" for organisms by blocking much of the UV flux. In the most favorable cases, this flux is sufficiently reduced such that organic in-fall could accumulate beneath overhanging surfaces and in pits and cracks while terrestrial microorganisms could persist for several tens of martian years.(2) The production of soils on the surface is considered by analogy with the arid US Southwest. Here differential insolation of incipient cracks of random orientations predicts crack orientation distributions consistent with field observations by assuming that only crack orientations which shield their interiors, minimizing their water loss, can grow, eventually disrupting the clast.(3) Disaggregated water ice to simulate the polar caps was produced by flash freezing in liquid nitrogen and crushing. When dust was added to the mixtures, the D/H ratio of the sublimate gas was seen to decrease with time from the bulk ratio. The more dust was added to the mixture, the more pronounced was this effect. The largest fractionation factor observed during these experiments was 2.5. Clean ice was also prepared and overlain by dust to simulate ground ice. Here, the movement of water vapor was modeled using an effective diffusivity that incorporated both adsorption on grains and diffusion. For low temperatures (<-55°C) a significant difference between the diffusivities of H2O and HDO was observed. This suggests adsorptive-control within the regolith as energies of interaction are 60-70kJmol-1. This ability of the martian regolith to preferentially adsorb HDO decouples the ice table and polar caps from the atmosphere and allows for geographic variations in the D/H ratio on Mars.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Planetary Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.