• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Photoluminescence of Quantum Confined Semiconductor Structures

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1309_sip1_m.pdf
    Size:
    5.841Mb
    Format:
    PDF
    Description:
    azu_etd_1309_sip1_m.pdf
    Download
    Author
    Mosor, Sorin
    Issue Date
    2005
    Advisor
    Khitrova, Galina
    Committee Chair
    Khitrova, Galina
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Different aspects of the photoluminescence from semiconductor quantum-confined structures are studied in this dissertation, for a better understanding of fundamental physics of semiconductors.The precursor of any photoluminescence study is the characterization of the linear optical properties of the semiconductor structure. High resolution absorption measurements were performed in order to study the interplay of disorder and acoustic phonon scattering in a quantum well. Also, reflectivity measurements, together with a fitting procedure based on the transfer matrix formalism, are used to determine the thickness of samples.Excitons are atom-like quasi-particles, formed from a bound electron-hole pair. They follow a Bose-Einstein statistic, so in principle it is possible to achieve an excitonic Bose-Einstein condensate. Time resolved photoluminescence measurements were performed over an extensive range of lattice temperatures and carrier concentrations, in order to determine the fraction of excitons formed from the electron-hole plasma in a quantum well, after non-resonant excitation. The experimental spectra were compared to a pure plasma calculation first, then excitons were taken into account. The highest fraction of formed excitons is found for low temperatures and intermediate carrier densities. This fraction is found to be very small, and this has clear implications on the excitonic Bose-Einstein condensation studies.The photoluminescence emitted left and right from a quantum well is interfered in a modified Mach-Zender interferometer. It is shown that the light emitted on the two paths will interfere for a V-shape geometry and will not for any other paths.A structure formed by placing a quantum well in a field antinode of a resonant planar microcavity exhibits normal mode coupling: splitting of the resonance spectral line. The coherence properties of the photoluminescence from a normal-mode-coupling microcavity are studied using another version of the Mach-Zender interferometer. The degree of coherence measured in this way depends greatly on the pump wavelength and intensity, ranging from zero to 0.8. However, direct observation of the emission speckle shows significant coherence in all cases. The difference is explained by the different methods used to evaluate the coherence.The strong coupling between a quantum dot and a photonic crystal nanocavity is investigated by observation of photoluminescence. A new method of tunning the cavity wavelength by deposition of a thin film of solid Xenon on all the surfaces of the sample is presented. The method allows the scanning of the cavity wavelength with about 5 nm without a decrease in the quality factor and without changing the temperature.Finally, an extensive study of the quality factors of quantum dot photonic crystal nanocavities is presented. The role of the quantum dot ensemble absorption is investigated. At higher excitation levels, lasing is observed and discussed.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.