• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Waveguide Sensor Platforms: A) Development of the Electroactive Fiber-Optic Chip and B) Attenuated Total Reflectance Spectroscopy of New Molecular Materials

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2583_sip1_m.pdf
    Size:
    5.885Mb
    Format:
    PDF
    Description:
    azu_etd_2583_sip1_m.pdf
    Download
    Author
    Beam, Brooke Michelle
    Issue Date
    2008
    Keywords
    Fiber Optics
    ATR
    Advisor
    Armstrong, Neal R.
    Committee Chair
    Armstrong, Neal R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The work embodied in this dissertation is specifically focused on the evanescent interaction of light with thin-films which has lead to two related instrument based projects: i) the Electroactive Fiber-Optic Chip (EA-FOC) and ii) Attenuated Total Reflectance (ATR) spectroscopy of novel materials. The EA-FOC combines the sensitivity of an electroactive total internal reflection element (20 to 50 times more sensitive than a transmission experiment) with the ease of use of fiber-optic based CCD spectrometers. A side-polished optical fiber, in a V-groove glass mount, forms the planar platform, which allows access to the evanescent field escaping from the fiber core. The exposed evanescent field, which was used to probe molecules or molecular assemblies supported by the platform, has an interaction area ca. 0.05 cm squared. Thin-film and bulk absorbing samples, and waveguide modeling calculations were initially used to evaluate the sensitivity of the FOC platform, which was found to be analogous to ATR instrumentation. The wavelength range of the FOC platform was increased to include the near-UV and applied to monitor adsorption of a protein film. Fluorescence applications of the FOC were demonstrated using a fluorescence bioassay and a drop cast nanoparticle film. Finally, a transparent conducting oxide film, ITO, was added to the surface of the platform to complete the EA-FOC for spectroelectrochemical applications. A methylene blue redox couple and an electrodeposited ultra-thin PEDOT film were used to probe the capabilities of the EA-FOC. The EA-FOC was shown to be a multifunctional platform for advanced sensor technologies requiring absorbance, fluorescence, and electrochemical detection or a combination thereof.ATR spectroscopy of novel materials included the evaluation of two architectures: i) a pH sensitive polyelectrolyte film and ii) surface capture of a nanoparticle film. Absorbance spectra of a polyaniline/polyacetic acid self-assembled bilayer were evaluated with respect to pH and potential using ATR spectroscopy; the ultimate application of the polymer signal transduction layer was to monitor proton transport across a lipid-bilayer. Additionally, ATR spectroscopy was used to monitor adsorption of pyridine capped nanoparticles on a silyl-propyl-thiol modified surface.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.