• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DESIGN AND CHARACTERIZATION OF NAFION®/EX-SITU SILICA NANOCOMPOSITE MEMBRANES: EFFECTS OF PARTICLE SIZE AND SURFACE MODIFICATION

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10745_sip1_m.pdf
    Size:
    6.774Mb
    Format:
    PDF
    Description:
    azu_etd_10745_sip1_m.pdf
    Download
    Author
    Muriithi, Beatrice Wanjku
    Issue Date
    2009
    Keywords
    Nafion
    Nanocomposite membranes
    Polymer electrolyte fuel cell
    Silica particles
    Advisor
    Loy, Douglas A.
    Committee Chair
    Loy, Douglas A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This dissertation focuses on the preparation of new Nafion®/ ex-situ silica nanocomposites membranes and the impact of particle size of spherical silica particles on the nanocomposites' properties. To achieve acceptable power production, fuel cell polymer membranes are required with good proton conductivity, water retention, thermal and mechanical stability. However, to avoid poisoning of fuel cell electrocatalysts with CO or other fuel contaminants, they must be operated at temperatures (>100 °C). At these temperatures, fuel cell membranes dehydrate resulting in dramatic decreases in proton conductivity or complete failure as membranes crack due to volumetric stress from water loss. Even if fuel cell is kept in a humidified chamber, increasing temperature will eventually shut the cell down as Nafion®'s bicontinuous structure "dissolves" into a single poorly conducting phase at temperatures above the polymer's Tg.This research provides systematic studies of effects of silica particle size on properties of silica-Nafion® nanocomposites. Results of this study include new insights into requirements for reproducible particle syntheses, practical methods for avoiding silica particle floatation during Nafion® nanocomposite membranes preparation, and a summary of the influence of particle size and functionalization on Nafion® membrane properties. Stober particle syntheses showed high sensitive to ammonia concentration and we discovered that literature procedures' variability is likely due to researchers failure to actually measure ammonia concentration in their aqueous base (which can be 50% or more off). Homogeneous nanocomposite membranes, as determined by AFM and SEM, were successfully prepared using more viscous dispersions. It was observed that nanocomposites membranes with small particles (<50 nm) showed significant increases in proton conductivity at temperatures above 80 °C. Surface modification of the silica particles improved the proton conductivity at 80 °C. Enhancement on proton conductivity was more pronounced with small modified particles at temperatures < 80 °C but unmodified particles were better than modified particles at temperatures >80 °C. Small, unmodified particles led to enhanced thermal stability of the Nafion® ionic domain, however, surface modification did not result in any thermal stability enhancement. Contrary to the expected, mechanical properties of the Nafion® were degraded by adding the silica particles, especially with smaller particles (<50nm).
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Materials Science & Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.