• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Chemical Systems for Electrochemical Mechanical Planarization of Copper and Tantalum Films

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2554_sip1_m.pdf
    Size:
    4.553Mb
    Format:
    PDF
    Description:
    azu_etd_2554_sip1_m.pdf
    Download
    Author
    Muthukumaran, Ashok Kumar
    Issue Date
    2008
    Keywords
    Electrochemical Mechanical Planarization (ECMP)
    Copper
    Tantalum
    Advisor
    Raghavan, Srini
    Committee Chair
    Raghavan, Srini
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Electro-Chemical Mechanical Planarization (ECMP) is a new and highly promising technology just reaching industrial application; investigation of chemistries, consumables, and tool/control approaches are needed to overcome technological limitations. Development of chemical formulations for ECMP presents several challenges. Unlike conventional CMP, formulations for ECMP may not need an oxidant. Organic additives, especially inhibitors used to control planarity (i.e. to protect recessed regions), need to be stable under applied anodic potential. To have a high current efficiency, the applied current should not induce decomposition of the formulations. In addition, to enable clearing of the copper film, the interactions between multiple exposed materials (barrier material as well as copper) must be considered. Development of a full sequence ECMP process would require the removal of the barrier layer as well. Chemical systems that exhibit a 1:1 selectivity between the barrier layer and copper would be ideal for the barrier removal step of ECMP. The main goal of this research is to investigate the chemistries suitable for ECMP of copper and tantalum films. Copper was electroplated onto the gold electrode of quartz crystals, and its dissolution/passivation behavior in hydroxylamine solutions was studied at different applied potential values. The dissolution rate of copper is pH dependent and exhibits a maximum in the vicinity of pH 6. Copper dissolution increases with respect to overpotential (η) and dissolution rates as high as 6000 Å/min have been obtained at overpotential of 750mV. While both benzotriazole (BTA) and salicylhydroxamic acid (SHA) serve as good inhibitors at lower overpotentials, their effectiveness decreases at higher overpotentials. A fundamental study was undertaken to evaluate the usefulness of a sulfonic acid based chemical system for the removal of tantalum under ECMP conditions. Tantalum as well as copper samples were polished at low pressures (~0.5 psi) under galvanostatic conditions in dihydroxy benzene sulfonic acid (DBSA) solutions maintained at different pH values. At a current density of 0.5 mA/cm² and a pH of 10, tantalum removal rate of 200 Å/min with a 1:1 selectivity to copper was obtained in 0.3M DBSA solutions containing 1.2M H₂O₂. The presence of a small amount (~ 0.1%) of colloidal silica particles was required to obtain good removal rates. A comparison of DBSA and methane sulfonic acid (MSA) based chemical system was studied for the removal of tantalum. The performance of DBSA is better than that of MSA. Additionally, DBSA solution has been used for tantalum nitride removal under ECMP conditions. However, DBSA is not as effective for tantalum nitride as it is for tantalum. Polishing of the patterned test structure in optimized solution containing 0.01M BTA results in complete removal of barrier layer and surface planarity is achieved.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Materials Science & Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.