• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Molecular Interstellar Medium from z=0-6

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2409_sip1_m.pdf
    Size:
    3.348Mb
    Format:
    PDF
    Description:
    azu_etd_2409_sip1_m.pdf
    Download
    Author
    Narayanan, Desika T
    Issue Date
    2007
    Keywords
    Star Formation
    Cosmology
    Galaxy Formation
    Interstellar Medium
    Radiative Transfer
    Planet Formation
    Advisor
    Walker, Christopher K
    Committee Chair
    Walker, Christopher K
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    I investigate the emission properties of the molecular interstellar medium in protoplanetary disks and galaxy mergers, though focus largely on the latter topic. I utilize both numerical models as well as observations to relate the emission characteristics to physical models for the formation and evolution of gas giant planets and galaxies. The main results of this thesis follow. (1) Gas giant protoplanets may be detectable via self-absorption signatures in molecular emission lines with sufficiently high critical density. Given the spatial resolution of e.g. ALMA, gas giant planets in formation may be directly imageable. (2) Starburst and AGN feedback-driven winds in galaxies can leave imprints on the molecular line emission properties via morphological outflows and high velocity peaks in the emission line spectra. Methods for distinguishing between high velocity peaks driven by dynamics versus those driven by winds are discussed. (3) CO line widths on average trace the virial velocity of z ∼ 6 quasar host halos. Thus, if the earliest quasars formed in ∼1013 M ⊙ halos, they are predicted to have broad molecular line widths. Selection effects may exist which tend quasars selected for optical luminosity toward molecular line widths narrower than the slightline-dependent mean. (4) Using the SMT, I observe a roughly linear relation between infrared luminosity and CO (J=3-2) luminosity in local galaxies confirming the results of recently observed L(IR)-HCN (J=1-0) relations. Subsequent modeling shows that observed SFR-molecular line luminosity relations owe to the average fraction of subthermally excited gas in galaxies, and are simply reflective of the assumed Schmidt law governing the SFR.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Astronomy
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.