• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Formation of Prebiotic Molecules in Liquid Water Environments on the Surface of Titan

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10091_sip1_m.pdf
    Size:
    10.49Mb
    Format:
    PDF
    Description:
    azu_etd_10091_sip1_m.pdf
    Download
    Author
    Neish, Catherine Dorothy
    Issue Date
    2008
    Advisor
    Lunine, Jonathan I.
    Committee Chair
    Lunine, Jonathan I.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Saturn’s moon Titan represents a unique locale for studying prebiotic chemistry. Reactions occurring in its thick nitrogen-methane atmosphere produce a wide variety of carbon, hydrogen, and nitrogen containing organic molecules. If these molecules are exposed to liquid water, they may react further to produce oxygen-containing species, a key step in the formation of terrestrial biomolecules. On average, Titan's surface is too cold for liquid water. However, models indicate that melting caused by impacts and/or cryovolcanism may lead to its episodic availability. One possible cryovolcanic dome, Ganesa Macula, was identified in early observations by the Cassini spacecraft. In this work, I estimate the height and morphology of this feature using a synthetic aperture radar (SAR) image. I then use a thermal conduction code to calculate the freezing timescale for an initially liquid dome, yielding freezing timescales of ~10² - 10⁵ years. To determine how far aqueous organic chemistry can proceed in liquid water environments on Titan, I measure the rate coefficients of Titan analogue organic molecules ("tholins") with low temperature aqueous solutions to produce oxygenated species. These reactions display first-order kinetics with half-lives between 0.4 and 7 days at 273 K (in water) and between 0.3 and 14 days at 253 K (in 13 wt. % ammonia-water). Tholin hydrolysis in aqueous solutions is thus very fast compared to the freezing timescales of impact melts and volcanic sites on Titan, which take hundreds to thousands of years to freeze. The fast incorporation of oxygen, along with new chemistry made available by the introduction of ammonia, may lead to the formation of molecules of prebiotic interest in these transient liquid water environments. This chemistry makes impact craters and cryovolcanoes important targets for future missions to Titan.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Planetary Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.