• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Catalytic Dehalogenatin of Perchloroethylene in a Redox Environment

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1423_sip1_m.pdf
    Size:
    5.694Mb
    Format:
    PDF
    Description:
    azu_etd_1423_sip1_m.pdf
    Download
    Author
    Orbay, Ozer
    Issue Date
    2005
    Keywords
    Environmental Engineering
    Advisor
    Arnold, Robert G.
    Committee Chair
    Arnold, Robert G.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The catalytic dehalogenation of tetrachloroethylene (PCE) occurs via oxidation or reductive hydrodechlorination. Catalytic oxidation uses oxygen to dehalogenate PCE into CO₂ and Cl₂. This process requires higher temperatures >350°C then reductive hydrodechlorination and can produce undesirable toxic products, such as dioxins and furans. Hydrodechlorination uses a reductant to reduce PCE to ethane, and intermediate products such as less chlorinated hydrocarbons. Catalyst deactivation and associated loss of activity are commonly observed. Here, we examined a redox environment for the destruction of PCE on commercially available and laboratory made precious metal loaded catalysts. When a mixture of PCE, oxygen and hydrogen are passed over the catalyst, the PCE is converted to ethane, CO₂, water, and HCl as a function of temperature (ambient to 450°C) and hydrogen to oxygen ratio in the feed (0 to 5). In the laboratory experiments, high conversion of PCE was observed for relatively high H₂/O₂ ratios (84% conversion with H₂/O₂ = 2.15, 63% with H₂/O₂ = 1.18 at 350°C, for commercial catalyst) for retention time of ~ 1 s. The conversion of PCE generally increased with increasing temperature for all H₂/O₂ ratios. In the strictly oxidation environment (H₂/O₂ = 0), PCE conversion was lower than with hydrogen at any given temperature (<30% at 464°C). At lower temperature (<350°C) the dominant carbon-containing product was ethane, under redox conditions. At high temperature (>380°C) CO₂ eluted from the reactor, suggesting that oxidation of reduction products or PCE occurs. Experiments were conducted by using a laboratory made catalyst. A mixture of three types of precious metals (Pt, Pd, and Rh) was impregnated onto a monolithic alumina support. These studies show no apparent performance difference between the two catalysts at high temperatures (>280°C). However, at low temperatures the laboratory catalyst outperforms the commercial catalyst. It was speculated that this difference due to high metal loading of the laboratory catalyst (38.61 mg versus 1.27 mg). A field scale study of the commercial catalyst was undertaken at the Superfund Park-Euclid site in Tucson, Arizona, where the soil is contaminated with PCE and other volatile hydrocarbons. Gases from a soil-vapor extraction unit were fed to the reactor, Even though the soil vapor contained high oxygen (>17%), high PCE conversion with and without hydrogen was observed. Due to the relatively high cost associated with the use of hydrogen, propane, methane, and diesel were investigated as replacement reductants. The results indicate that propane and diesel are promising replacements for hydrogen that deserve further investigation.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Environmental Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.