• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Multi-Layer Optical Memory Systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1692_sip1_m.pdf
    Size:
    1.304Mb
    Format:
    PDF
    Description:
    azu_etd_1692_sip1_m.pdf
    Download
    Author
    Park, Sang-Ki
    Issue Date
    2006
    Advisor
    Milster, Tom D
    Committee Chair
    Milster, Tom D
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A master and slave servo technique that maintains tracking and focus registration inside a volumetric two-photon disc is presented, and a dynamic test stand with full capability of closed-loop focusing and tracking servo is designed and experimentally demonstrated. The stability of the servo control is experimentally verified. Also, the misregistration of the slave beam with respect to the master beam due to disc tilt and beam skew is calculated.Conventional multiple-layered reflective thin-film systems, which detect reflected light from data layer using focused illumination, are also of interest, because they have higher readout data transfer rate than fluorescent media and more conventional fabrication technology and materials are available. The capacity and performance of a conventional multiple-layered bit-wise optical memory system are affected by several factors, like spherical aberration, layer transmission and inter-layer crosstalk. Characteristics and limitations due to each factor are investigated, and ways to improve capacity are presented. A new technique to analyze inter-layer crosstalk based on Babinet's principle is also presented. The inter-layer crosstalk is calculated for both coherent and incoherent illumination, and results for several combinations of track geometries are compared. Primary results include that the total crosstalk is minimized at certain layer spacings for both coherent and incoherent illumination through optimization of media parameters. The incoherent case shows lower values of total crosstalk and more generous tolerances than the coherent case. A simplified model is also presented to explain the existence of local crosstalk minima.Media satisfying the optimum condition to minimize inter-layer crosstalk are designed by using numerical optimization with merit function and admittance diagram.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Optical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.