• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Uncertainty Analysis and Calibration of Water Distribution Quality Models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1562_sip1_m.pdf
    Size:
    1.993Mb
    Format:
    PDF
    Description:
    azu_etd_1562_sip1_m.pdf
    Download
    Author
    Pasha, Md Fayzul Kabir
    Issue Date
    2006
    Keywords
    Water distribution
    water quality
    Monte Carlo simulation
    uncertainty
    Calibration
    Advisor
    Lansey, Kevin E.
    Committee Chair
    Lansey, Kevin E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Water distribution system modeling can be used as a basis of planning and operation decisions. However, model accuracy and uncertainty will impact the model based decisions. Model prediction uncertainty results from uncertainty in model parameters that are determined through calibration or are based upon modeler judgment. The focus of this dissertation is the effect of uncertainties on water quality model estimates and calibration. The dissertation is centered around three journal articles and a technical note.In the first paper, the effect of parameter uncertainty on water quality in a distribution system under steady and unsteady conditions was analyzed by Monte Carlo simulation (MCS). Sources of uncertainties for water quality include decay coefficients, pipe diameter and roughness, and nodal spatial and temporal demands. The effect of individual parameter is discussed, as well as the combined effect of the parameters. It also describes the effect of flow patterns.A general calibration model is developed in the second paper for identifying wall decay coefficients. The problem is solved using the SFLA optimization algorithm that is coupled with hydraulic and water quality simulation models using the EPANET toolkit. The methodology is applied on two application networks. The study presents the effect of different field conditions such as the network with or without tanks, altering disinfectant injection policies, changing measurement locations, and varying the number of global wall decay coefficient on the estimated parameters. The numerical study also discusses whether the complexity of the system can be captured with fewer than the actual number of field parameters and if the number of the measurement locations is sufficient.The third paper conducts a study that considers a full calibration assessment for a water quality model in the distribution systems. The calibration process begins with estimating the the best fit wall decay coefficients. Next, the uncertainties involved with estimated parameters are calculated. Finally, the study assesses the model prediction uncertainties for critical demand conditions due to the parameter uncertainties. Various conditions are evaluated including the effects of different measurement errors and different measurement conditions on the uncertainty levels of estimated parameters as well as on the model predictions.Fourth paper presents study in which a booster disinfectant is introduced within a distribution system to maintain disinfectant residuals and avoid high dosages at water sources. Assuming that first order reaction kinetics apply to chlorine decay, an integer linear programming optimization problem is posed to booster locations and their injection rates. The formulation avoids long water quality simulations by adding constraints requiring the concentrations at the beginning and end of the design period to be the same. The optimization problem is divided into two levels. The upper level selects the booster locations using a genetic algorithm, if more than a few boosters are included, or enumeration, if the number of boosters and/or potential locations is relatively small. Given a set of boosters from the upper level, the lower level minimizes the chlorine mass to be injected to maintain required residuals. The approach is applied to the Brushy Plains system for alternative numbers of allowable boosters.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Civil Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.