• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development, Verification, and Evaluation of a Solute Transport Model in Surface Irrigation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1322_sip1_m.pdf
    Size:
    10.23Mb
    Format:
    PDF
    Description:
    azu_etd_1322_sip1_m.pdf
    Download
    Author
    Perea-Estrada, Hugo
    Issue Date
    2005
    Keywords
    fertigation
    advection-dispersion equation
    split operator
    method of characteristics
    longitudinal dispersion
    furrow irrigation
    Advisor
    Waller, Peter
    Committee Chair
    Waller, Peter
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A cross-section averaged Advection-Dispersion equation (ADE) model was developed to simulate the transport of fertilizer in furrow irrigation. The advection and dispersion processes were solved separately by implementing the method of the characteristics with cubic spline interpolation (and natural boundary condition) and weighted finite difference scheme respectively. A zero-flux boundary condition during advance and an advective gradient at the downstream end of an open furrow were established. Local pseudo-steady state was assumed in order to apply Fischer's longitudinal dispersion equation under non-uniform and unsteady furrow flow conditions. Also, several parameters were used to evaluate the ADE model and fertigation performance.A field tracer experiment in two types of downstream-end furrow and two treatments was conducted and described. Infiltration and roughness parameters were calibrated by implementing a volume balance approach. The calibrated parameters were used as input data to run the surface irrigation model (SRFR). The roughness coefficient was 0.045 for wheel and 0.055 for non-wheel furrow treatment for bare soil. The root mean square error (RMSE) comparing the computed and observed infiltrated volume was in the range of 0.09-0.38 m3. The close match between simulated and observed data indicates an acceptable calibration. Pulses of fertilizer injected at the head end of four furrows each having unique management characteristics were simulated satisfactorily during the entire duration of the irrigation event. The constant value of the longitudinal dispersion coefficient was 1 m2 min-1 and yielded an acceptable space-time evolution of the pulses of tracer injected. Similar results for the dispersion coefficient were obtained with Fischer's equation in non-uniform and unsteady stream flow conditions in the furrow. An evaluation of several fertigation strategies for furrow systems indicated that fertigation by pulses could help reduce leaching and runoff losses in surface irrigation systems.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Agricultural & Biosystems Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.