• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Part I. Application of 2-Hydroxymethylacrylic Acid, a Product of Baylis-Hillman Reaction, for the Synthesis of Novel N-backbone-to-Side-Chain Cyclic Peptide Analogs: Strategies and Side Reactions Part II. Synthesis and Biological Activities of Chimeric Bioactive Peptides Featuring Amino Acids Coupled to 4-Anilino-N-Phenethyl-Piperidine

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_2003_sip1_m.pdf
    Size:
    17.81Mb
    Format:
    PDF
    Description:
    azu_etd_2003_sip1_m.pdf
    Download
    Author
    Petrov, Ravil Rashitovich
    Issue Date
    2007
    Keywords
    fentanyl derivatives
    opioid peptides
    Baylis-Hillman reaction
    enkephalin analogues
    antihyperalgesia
    allodynia
    Advisor
    Hruby, Victor J.
    Committee Chair
    Hruby, Victor J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    During my research career in Prof. V.J.Hruby's laboratory I worked on two different projects. The first project, which was initiated by the author, was planned to serve the need of our laboratory for a novel method of peptide cyclization. This method was planned to use recent advances in Pd0-catalyzed asymmetric synthesis combined with the structural richness offered by the Baylis-Hillman chemistry which could open new ways to diverse areas of drug design, molecular immunology and chemotherapy. This approach would provide cyclic peptides featuring N-alkylated amino acids that would confer high resistance to degradation by proteases. Because of numerous synthetic problems imposed, this strategy was not of considerable current use in peptide synthesis, especially on solid supports. However, despite a substantial amount of effort invested, this method faced serious drawbacks such as multistep synthesis and side reactions when applied to solid supports. Moreover, recent introduction of microwave technology which has helped to solve a great number of problems has led to a renaissance in the classical lactam and thioester bond cyclizations which overshadowed our quest for a novel methodology. The second project was focused on application of 4-anilidopiperidines for the synthesis of chimeric bioactive peptides. It was an effort towards the development of novel analgesics with reduced toxicity and enhanced potency. This project linked small molecule and multimeric ligand designs that were ongoing in our laboratory at the time. Major accomplishments in this project were made possible by successful resolution of several research challenges. I was able to find a straightforward, convenient and economical approach for the synthesis of novel analogues on a solid support. These developments led to novel compounds which showed substantial increases in their binding affinity relative to corresponding opioid analogues. To illustrate, compounds PET25, 26, 27, 29, 30, 31, and 32 showed high bioactivity and sub-nanomolar binding affinity to opioid receptors. Most of the peptides generated in the second project are still being investigated for their biological activities by our colleagues at the Department of Pharmacology, but the results to date indicate that some highly potent novel compounds have been made.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.