• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Stratigraphy, Geochronology and Geochemistry of Paleolakes on the Southern Bolivian Altiplano

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1401_sip1_m.pdf
    Size:
    11.43Mb
    Format:
    PDF
    Description:
    azu_etd_1401_sip1_m.pdf
    Download
    Author
    Placzek, Christa
    Issue Date
    2005
    Keywords
    Bolivia
    U-Th
    paleolakes
    dating
    climate
    tufas
    Advisor
    Quade, Jay
    Patchett, P. Jonathan
    Committee Chair
    Quade, Jay
    Patchett, P. Jonathan
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Precise chronologies of climate events in the tropics are rare yet essential for understanding how tropical climate relates to global climate at millennial to longer time scales. An increasingly important area for understanding these interactions is the southern Bolivian Altiplano (15-22oS) which represents the waning and southeastern end of the South American Monsoon, a system that is, today, modulated by regional upper-air circulation anomalies under the influence of tropical Pacific sea-surface temperature gradients associated with El Niño/Southern Oscillation (ENSO). Mechanisms of summer rainfall variations on millennial and longer time scales are less well understood, despite well-established evidence for profound changes in hydrologic budgets on the southern Bolivian Altiplano. Large shifts in effective moisture on the southern Bolivian Altiplano produced deep lakes in the Poopo, Coipasa, and Uyuni basins, basins that are currently occupied by salt pans or very shallow lakes. We mapped shoreline stratigraphy and sampled carbonates for over 170 uranium-thorium (U-Th) and radiocarbon (14C) dates to refine paleolake history of the Southern Bolivian Altiplano. As part of this dissertation work, I helped assemble a U-Th dating facility at the University of Arizona and obtained over 90 uranium-thorium (U-Th) dates from paleolake carbonates. Carbonate textures were evaluated for potential diagenetic effects, but the principal consideration in dating such carbonates is the isotopic composition and quantity of initial Th incorporated into the carbonate. We establish criteria for statigraphically meaningful dates and strategies for successful U-Th dating of paleolake carbonates. The stable isotope, 87-strontium/86-strontium (87Sr/86Sr), and 234U/238U ratios of modern surface waters and of paleolake carbonates can be used as tracers of the region's various lake cycles and provides a test hydrologic models of these lake cycles.Volcanic tuffs provide important stratigraphic markers for paleolimnologic, geomorphic, and archeological studies. Despite the widespread occurrence of late Quaternary tuffs on the Bolivian Altiplano, few of these deposits have been previously recognized either from natural exposures or in paleolake sediment cores. We document the presence of 38 distal tuffs in Quaternary lacustrine and alluvial deposits, and determine the composition of glass and phenocrysts by electron microprobe analyses.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Geosciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.