The Use of Nanoparticles on Nanometer Patterns for Protein Identification
Name:
azu_etd_2835_sip1_m.pdf
Size:
15.13Mb
Format:
PDF
Description:
azu_etd_2835_sip1_m.pdf
Author
Powell, Tremaine BennettIssue Date
2008Keywords
Protein NanoarraySelf-Assembly
Gold Nanoparticles
Fluorescent Beads
Electron Beam Lithography
Fluorescent attenuation
Advisor
Yoon, Jeong-YeolCommittee Chair
Yoon, Jeong-Yeol
Metadata
Show full item recordPublisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
This dissertation describes the development of a new method for increasing the resolution of the current protein microarray technology, down to the single molecule detection level. By using a technique called size-dependent self-assembly, different proteins can be bound to different sized fluorescent nanostructures, and then located on a patterned silicon substrate based on the sized pattern which is closest to the size of the bead diameter.The protein nanoarray was used to detect antibody-antigen binding, specifically anti-mouse IgG binding to mouse IgG. The protein nanoarray is designed with the goal of analyzing rare proteins. However, common proteins, such as IgG, are used in the initial testing of the array functionality. Mouse IgG, representing rare proteins, is conjugated to fluorescent beads and the beads are immobilized on a patterned silicon surface. Then anti-mouse IgG binds to the mouse IgG on the immobilized beads. The binding of the antibody, anti-mouse IgG, to the antigen, mouse IgG is determined by fluorescent signal attenuation.The first objective was to bind charged nanoparticles, conjugated with proteins, to an oppositely charged silicon substrate. Binding of negatively charged gold nanoparticles (AuNP), conjugated with mouse IgG, to a positively charged silicon surface was successful.The second objective was to demonstrate the method of size-dependent self-assembly at the nanometer scale (<100 >nm). Different-sized, carboxylated, fluorescent beads and AuNP, which were conjugated with proteins, were serially added to a patterned polymethyl methacrylate (PMMA) coated silicon surface. Size-dependent self-assembly was successfully demonstrated, down to the nanometer scale.The final objective was to obtain a signal from antibody-antigen binding within the protein array. Conjugated fluorescent beads were bound to e-beam patterns and signal attenuation was measured when the antibodies bound to the conjugated beads. The size-dependent self-assembly is a valuable new method that can be used for the detection and quantification of proteins.Type
textElectronic Dissertation
Degree Name
PhDDegree Level
doctoralDegree Program
Agricultural & Biosystems EngineeringGraduate College