• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DNA and DNA-Interacting Proteins as Anticancer Drug Targets

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1919_sip1_m.pdf
    Size:
    3.129Mb
    Format:
    PDF
    Description:
    azu_etd_1919_sip1_m.pdf
    Download
    Author
    Punchihewa, Chandanamalie
    Issue Date
    2006
    Keywords
    DNA
    DNA-interacting proteins
    anticancer drugs
    Advisor
    Yang, Danzhou
    Committee Chair
    Yang, Danzhou
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    DNA is both the oldest and newest of targets for cancer therapy. While it is already being targeted by many anticancer drugs in the clinic, the development of sequence-specific DNA binders has brought it back to the limelight as a valuable anticancer drug target.My studies on DNA interacting agents was initiated with the DNA intercalator campotothecin, and also included topoisomerase I enzyme. I have evaluated the structure of topoisomerase I C-terminal domain that consists of the active site tyrosine. My data indicate that this domain exists in a molten globule conformation with a fluctuating tertiary structure. These fluctuations are suggested to be important in interaction with the topoisomerase I core domain and DNA. I have also evaluated the DNA interactions of the camptothecin analogue homocamptothecin and have determined that homocamptothecin intercalate with DNA in the absence of topoisomerase I, and that such intercalation results in its lactone stabilization. Subsequently, the mechanism of topoisomerase I mediated inhibition of HIF-1 by camptothecin was explored. I have shown that camptothecin stimulate topoisomerase I cleavage complex formation in the HIF-1 binding site, which is suggested to prevent the DNA binding of HIF-1.The second part of this study was focused on understanding the mechanism of action of another DNA binder, XR5944. Designed as a dual topoisomerase inhibitor, XR5944 was subsequently shown to have a different mechanism of action - inhibition of trancription. The NMR structural analysis, in our lab, of the drug-DNA complex showed that XR5944 bis-intercalate with DNA, while binding in the DNA major groove. Driven by these combined interaction modes, XR5944 is shown to inhibit the DNA binding and the subsequent transcriptional activity of specific transcription factors such as estrogen receptors and AP-1, which are overexpressed in certain cancers.Finally, I have analyzed G-quadruplex structures formed by telomeric DNA. The formation and stabilization of DNA G-quadruplexes in the human telomeric sequence have been shown to inhibit the activity of telomerase. Thus the telomeric DNA G-quadruplex has been considered as an attractive anticancer drug target. Telomeric DNA forms multiple G-quadruplex conformations, and my data reveal the conformations of the major G-quadruplexes formed by human telomeres.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Pharmaceutical Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.