• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Early Responses to Oxidative Stress In Heart Cells: Signals From The Cell Membrane To The Nucleus and Beyond

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1310_sip1_m.pdf
    Size:
    2.713Mb
    Format:
    PDF
    Description:
    azu_etd_1310_sip1_m.pdf
    Download
    Author
    Purdom-Dickinson, Sally Elizabeth
    Issue Date
    2005
    Keywords
    oxidant
    Nrf2
    cardiomyocyte
    fibroblast
    cytoprotection
    PI3Kinase
    Advisor
    Chen, Qin M.
    Committee Chair
    Chen, Qin M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Oxidative stress is known to contribute to many forms of heart disease. Oxidants such as H₂O₂ can cause hypertrophy of cardiomyocytes (CMCs). Heart fibroblasts (HFs) also contribute to oxidant-induced heart disease by disordering the extracellular matrix and causing fibrosis. Since both of these cells encounter the same stressors in vivo, we examined the signaling pathways involved in responding to oxidative stress in both cell types. We have established the EGF Receptor, Src and matrix metalloproteinases (MMPs) as key regulators of oxidant-mediated phosphorylation of the MAPKs ERK1/2 and JNKs but not p38 in CMCs and HFs. We used oligonucleotide microarrays to examine the differences in global gene expression after H₂O₂ treatment in CMCs and HFs. Twenty-four hours after treatment, significant numbers of upregulated genes could be classified as being related to antioxidant or detoxification responses in both cell types. This trend lead us to examine the role of activation of promoters containing the Antioxidant Response Element (ARE) in the reaction of CMCs to H₂O₂. We have shown that H₂O₂ activates the ARE in CMCs in a manner that is dependant on the transcription factor Nf-E2 related factor 2 (Nrf2). ARE activation by H₂O₂ seems to induce cytoprotection. CMCs pretreated with H₂O₂ showed significantly less activation of caspase-3 when exposed to another oxidant, Doxorubicin. Overexpression of Nrf2 mediates this cytoprotection, possibly by protecting the cells from caspase-independent cell death. Although ARE-dependant genes were upregulated in the presence of excess Nrf2, two contractile proteins were repressed, suggesting that Nrf2 overexpression may have unknown side-effects in CMCs. We also studied the activation mechanism of Nrf2 in CMCs. Nrf2 protein levels increased after 10 min of exposure to 100 μM H₂O₂ and peaked at about 1 hr. Pharmacological and genetic inhibition of the PI3-Kinase pathway blocked AREluciferase activity in these cells. The PI3-Kinase inhibitor LY294002 also blocked Nrf2 protein accumulation, but not nuclear translocation. Here I present evidence that Nrf2 accumulation after H₂O₂ exposure is due to PI3-Kinase-mediated translational regulation. Since phosphorylation of translation initiation factors eIF4E and eIF2alpha are both inhibited by LY294002, Nrf2 translation initiation may be through non-5’ cap-mediated means.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Genetics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.