• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Commensal and pathogenic Escherichia coli use a common pilus for epithelial cell colonization. G-quadruplex interactive compounds as broad spectrum antimicrobials.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_10410_sip1_m.pdf
    Size:
    19.73Mb
    Format:
    PDF
    Description:
    azu_etd_10410_sip1_m.pdf
    Download
    Author
    Rendon, Maria Auxilio
    Issue Date
    2009
    Keywords
    Adherence
    Escherichia
    G-quadruplex
    Neisseria
    Pili
    Advisor
    So, Magdalene Y
    Committee Chair
    So, Magdalene Y
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Diarrheagenic Escherichia coli (E. coli) and Neisseria sp. are Gram-negative pathogens that cause high disease burden, especially in low-income countries.Enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) are a subset of E. coli that can cause disease. The sequence of E. coli genomes revealed the presence of at least 16 putative pili operons, it is still unknown if they encode functional pili. Several adhesins have been described in EPEC; however it is still an enigma if EHEC produces pili. In this dissertation the identification and characterization of a new pilus in EHEC is described. The main pilin subunit is encoded in the yagZ gene (renamed ecpA) and is present in all E. coli. We demonstrate ECP production in 137 (70%) of a total of 197 ecpA+ strains representing different categories of E. coli. Isogenic ecpA mutants of EHEC O157:H7 and fecal commensal E. coli showed significant reduction in adherence to cultured epithelial cells. Adherence levels were not hampered after single mutation of ecpA in EPEC. Only after the removal of the known EPEC adhesins such as BFP and intimin we were able to see significant reduction in adherence levels. In sum, ECP is the first pilus of EHEC O157:H7 with a potential role in host epithelial cell colonization. However, EPEC-ECP plays a secondary role in adherence.Since 2007 the CDC recommends only third generation cephalosporins as the elected treatment for Neisseria gonorrhoeae infections. There is an urgent need to search for new drug targets and to development new drugs. Regions rich in guanine in the DNA are able to form secondary structures known as G-quadruplexes. It has been shown that G-quadruplexes are involved in control of transcription, translation and telomere elongation in mammalian cells. G-quadruplex interactive compounds are being developed for cancer therapy. G-quadruplex motifs are also present in bacteria. The fact that G-quadruplex interactive compounds can impair cancer development leads us to hypothesize that these drugs can be used as antimicrobials. This work presents evidence for the potential of G-quadruplex interactive compounds as broad-spectrum antimicrobials.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Microbiology
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.