• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Seismic Effect of Impacts on Asteroid Surface Morphology

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1164_sip1_m.pdf
    Size:
    9.168Mb
    Format:
    PDF
    Description:
    azu_etd_1164_sip1_m.pdf
    Download
    Author
    Richardson Jr., James Edward
    Issue Date
    2005
    Keywords
    impact cratering
    asteroid sttructures
    asteroid seismology
    asteroid geomorphology
    asteroid cratering records
    Advisor
    Melosh, Henry J.
    Greenberg, Richard J.
    Committee Chair
    Melosh, Henry J.
    Greenberg, Richard J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Impact-induced seismic vibrations have long been suspected of being an important surface modification process on small satellites and asteroids. In this study, I use a series of linked seismic and geomorphic models to investigate the process in detail. I begin by developing a basic theory for the propagation of seismic energy in a highly fractured asteroid, and I use this theory to model the global vibrations experienced on the surface of an asteroid following an impact. These synthetic seismograms are then applied to a model of regolith resting on a slope, and the resulting downslope motion is computed for a full range of impactor sizes. Next, this computed downslope regolith flow is used in a morphological model of impact crater degradation and erasure, showing how topographic erosion accumulates as a function of time and the number of impacts. Finally, these results are applied in a stochastic cratering model for the surface of an Eros-like body (same volume and surface area as the asteroid), with craters formed by impacts and then erased by the effects of superposing craters, ejecta coverage, and seismic shakedown. This simulation shows good agreement with the observed 433 Eros cratering record at a Main Belt exposure age of $400 \pm 200$ Myr, including the observed paucity of small craters. The lowered equilibrium numbers (loss rate = production rate) for craters less than $\sim 100$ m in diameter is a direct result of seismic erasure, which requires less than a meter of mobilized regolith to reproduce the NEAR observations.This study also points to an upper limit on asteroid size for experiencing global, surface-modifying, seismic effects from individual impacts of about 70-100 km (depending upon asteroid seismic properties). Larger asteroids will experience only local seismic effects from individual impacts.In addition to the study of global seismic effects on asteroids, a chapter is also included which details the impact ejecta plume modeling I have done for the Deep Impact mission to the comet Tempel I. This work will also have direct application to impacts on asteroids, and will be used in the future to refine the cratering history modeling performed thus far.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Planetary Sciences
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      The formation of the Baptistina family by catastrophic disruption: Porous versus non-porous parent body

      Jutzi, M.; Michel, P.; Benz, W.; Richardson, D. C. (The Meteoritical Society, 2009-01-01)
      In this paper, we present numerical simulations aimed at reproducing the Baptistina family based on its properties estimated by observations. A previous study by Bottke et al. (2007) indicated that this family is probably at the origin of the K/T impactor, is linked to the CM meteorites and was produced by the disruption of a parent body 170 km in size due to the head-on impact of a projectile 60 km in size at 3 km s^(-1). This estimate was based on simulations of fragmentation of non-porous materials, while the family was assumed to be of degrees C taxonomic type, which is generally interpreted as being formed from a porous body. Using both a model of fragmentation of non-porous materials, and a model that we developed recently for porous ones, we performed numerical simulations of disruptions aimed at reproducing this family and at analyzing the differences in the outcome between those two models. Our results show that a reasonable match to the estimated size distribution of the real family is produced from the disruption of a porous parent body by the head-on impact of a projectile 54 km in size at 3 km s^(-1). Thus, our simulations with a model consistent with the assumed dark type of the family requires a smaller projectile than previously estimated, but the difference remains small enough to not affect the proposed scenario of this family history. We then find that the break-up of a porous body leads to different outcomes than the disruption of a non-porous one. The real properties of the Baptistina family still contain large uncertainties, and it remains possible that its formation did not involve the proposed impact conditions. However, the simulations presented here already show some range of outcomes and once the real properties are better constrained, it will be easy to check whether one of them provides a good match.
    • Thumbnail

      Characterizing and navigating small bodies with imaging data

      Gaskell, R. W.; Barnouin-Jha, O. S.; Scheeres, D. J.; Konopliv, A. S.; Mukai, T.; Abe, S.; Saito, J.; Ishiguro, M.; Kubota, T.; Hashimoto, T.; et al. (The Meteoritical Society, 2008-01-01)
      Recent advances in the characterization of small body surfaces with stereophotoclinometry are discussed. The principal data output is an ensemble of landmark maps (L-maps), high-resolution topography/albedo maps of varying resolution that tile the surface of the body. Because they can have a resolution comparable to the best images, and can be located on a global reference frame to high accuracy, L-maps provide a significant improvement in discriminatory power for studies of small bodies, ranging from regolith processes to interior structure. These techniques are now being used to map larger bodies such as the Moon and Mercury. L-maps are combined to produce a standard global topography model (GTM) with about 1.57 million vectors and having a wide variety of applications. They can also be combined to produce high-resolution topography maps that describe local areas with much greater detail than the GTM. When combined with nominal predictions from other data sources and available data from other instruments such as LIDAR or RADAR, solutions for the spacecraft position and camera pointing are the most accurate available. Examples are drawn from studies of Phobos, Eros, and Itokawa, including surface characterization, gravity analysis, spacecraft navigation, and incorporation of LIDAR or RADAR data. This work has important implications for potential future missions such as Deep Interior and the level of navigation and science that can be achieved.
    • Thumbnail

      Rosetta target asteroid 2867 Steins: An unusual E-type asteroid

      Weissman, Paul R.; Hicks, Michael D.; Abell, Paul A.; Choi, Young-Jun; Lowry, Stephen C. (The Meteoritical Society, 2008-01-01)
      ESAs Rosetta spacecraft will fly by main-belt asteroid 2867 Steins on September 5, 2008. We obtained new visible wavelength spectra of 2867 Steins on December 19, 2006 (UT), using the Palomar 5 m telescope and the facility Double Spectrograph. Two sets of spectra, taken ~3 h apart, one half of the rotation period for 2867 Steins, show it to be an E-type asteroid. The asteroid displays a 0.50 micrometer feature that is considered diagnostic of the E(II) sub-class, but is deeper than any previously observed E-type. This feature is most likely due to the presence of oldhamite (CaS) on the asteroids surface. Also, the observed Steins spectra are far redder than any other known E-types. There is potential evidence for heterogeneity on hemispheric scales, one side of the asteroid appearing to be significantly redder than the other. No known recovered meteorite sample matches the unusual spectra of 2867 Steins, but the closest analog would be similar to an enstatite achondrite (aubrite).
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.