We are upgrading the repository! A content freeze is in effect until December 6th, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.advisorMelosh, Henry J.en_US
dc.contributor.advisorGreenberg, Richard J.en_US
dc.contributor.authorRichardson Jr., James Edward
dc.creatorRichardson Jr., James Edwarden_US
dc.date.accessioned2011-12-05T22:34:35Z
dc.date.available2011-12-05T22:34:35Z
dc.date.issued2005en_US
dc.identifier.urihttp://hdl.handle.net/10150/194454
dc.description.abstractImpact-induced seismic vibrations have long been suspected of being an important surface modification process on small satellites and asteroids. In this study, I use a series of linked seismic and geomorphic models to investigate the process in detail. I begin by developing a basic theory for the propagation of seismic energy in a highly fractured asteroid, and I use this theory to model the global vibrations experienced on the surface of an asteroid following an impact. These synthetic seismograms are then applied to a model of regolith resting on a slope, and the resulting downslope motion is computed for a full range of impactor sizes. Next, this computed downslope regolith flow is used in a morphological model of impact crater degradation and erasure, showing how topographic erosion accumulates as a function of time and the number of impacts. Finally, these results are applied in a stochastic cratering model for the surface of an Eros-like body (same volume and surface area as the asteroid), with craters formed by impacts and then erased by the effects of superposing craters, ejecta coverage, and seismic shakedown. This simulation shows good agreement with the observed 433 Eros cratering record at a Main Belt exposure age of $400 \pm 200$ Myr, including the observed paucity of small craters. The lowered equilibrium numbers (loss rate = production rate) for craters less than $\sim 100$ m in diameter is a direct result of seismic erasure, which requires less than a meter of mobilized regolith to reproduce the NEAR observations.This study also points to an upper limit on asteroid size for experiencing global, surface-modifying, seismic effects from individual impacts of about 70-100 km (depending upon asteroid seismic properties). Larger asteroids will experience only local seismic effects from individual impacts.In addition to the study of global seismic effects on asteroids, a chapter is also included which details the impact ejecta plume modeling I have done for the Deep Impact mission to the comet Tempel I. This work will also have direct application to impacts on asteroids, and will be used in the future to refine the cratering history modeling performed thus far.
dc.language.isoENen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectimpact crateringen_US
dc.subjectasteroid sttructuresen_US
dc.subjectasteroid seismologyen_US
dc.subjectasteroid geomorphologyen_US
dc.subjectasteroid cratering recordsen_US
dc.titleThe Seismic Effect of Impacts on Asteroid Surface Morphologyen_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.contributor.chairMelosh, Henry J.en_US
dc.contributor.chairGreenberg, Richard J.en_US
dc.identifier.oclc659746241en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.contributor.committeememberTurtle, Elizabeth P.en_US
dc.contributor.committeememberChase, Clement G.en_US
dc.contributor.committeememberPelletier, Jon D.en_US
dc.identifier.proquest1164en_US
thesis.degree.disciplinePlanetary Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.namePhDen_US
refterms.dateFOA2018-07-01T09:15:53Z
html.description.abstractImpact-induced seismic vibrations have long been suspected of being an important surface modification process on small satellites and asteroids. In this study, I use a series of linked seismic and geomorphic models to investigate the process in detail. I begin by developing a basic theory for the propagation of seismic energy in a highly fractured asteroid, and I use this theory to model the global vibrations experienced on the surface of an asteroid following an impact. These synthetic seismograms are then applied to a model of regolith resting on a slope, and the resulting downslope motion is computed for a full range of impactor sizes. Next, this computed downslope regolith flow is used in a morphological model of impact crater degradation and erasure, showing how topographic erosion accumulates as a function of time and the number of impacts. Finally, these results are applied in a stochastic cratering model for the surface of an Eros-like body (same volume and surface area as the asteroid), with craters formed by impacts and then erased by the effects of superposing craters, ejecta coverage, and seismic shakedown. This simulation shows good agreement with the observed 433 Eros cratering record at a Main Belt exposure age of $400 \pm 200$ Myr, including the observed paucity of small craters. The lowered equilibrium numbers (loss rate = production rate) for craters less than $\sim 100$ m in diameter is a direct result of seismic erasure, which requires less than a meter of mobilized regolith to reproduce the NEAR observations.This study also points to an upper limit on asteroid size for experiencing global, surface-modifying, seismic effects from individual impacts of about 70-100 km (depending upon asteroid seismic properties). Larger asteroids will experience only local seismic effects from individual impacts.In addition to the study of global seismic effects on asteroids, a chapter is also included which details the impact ejecta plume modeling I have done for the Deep Impact mission to the comet Tempel I. This work will also have direct application to impacts on asteroids, and will be used in the future to refine the cratering history modeling performed thus far.


Files in this item

Thumbnail
Name:
azu_etd_1164_sip1_m.pdf
Size:
9.168Mb
Format:
PDF
Description:
azu_etd_1164_sip1_m.pdf

This item appears in the following Collection(s)

Show simple item record